These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29594496)

  • 1. pDHS-ELM: computational predictor for plant DNase I hypersensitive sites based on extreme learning machines.
    Zhang S; Chang M; Zhou Z; Dai X; Xu Z
    Mol Genet Genomics; 2018 Aug; 293(4):1035-1049. PubMed ID: 29594496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.
    Zhang S; Zhou Z; Chen X; Hu Y; Yang L
    J Theor Biol; 2017 Aug; 426():126-133. PubMed ID: 28552554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of DNase I hypersensitive sites in plant genome using multiple modes of pseudo components.
    Zhang S; Zhuang W; Xu Z
    Anal Biochem; 2018 May; 549():149-156. PubMed ID: 29604265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pDHS-DSET: Prediction of DNase I hypersensitive sites in plant genome using DS evidence theory.
    Zhang S; Lin J; Su L; Zhou Z
    Anal Biochem; 2019 Jan; 564-565():54-63. PubMed ID: 30339812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use Chou's 5-steps rule to identify DNase I hypersensitive sites via dinucleotide property matrix and extreme gradient boosting.
    Zhang S; Xue T
    Mol Genet Genomics; 2020 Nov; 295(6):1431-1442. PubMed ID: 32685987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework.
    Liu B; Long R; Chou KC
    Bioinformatics; 2016 Aug; 32(16):2411-8. PubMed ID: 27153623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest.
    Manavalan B; Shin TH; Lee G
    Oncotarget; 2018 Jan; 9(2):1944-1956. PubMed ID: 29416743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for DNase I hypersensitive sites identification.
    Lyu C; Wang L; Zhang J
    BMC Genomics; 2018 Dec; 19(Suppl 10):905. PubMed ID: 30598079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide nucleosome positioning is orchestrated by genomic regions associated with DNase I hypersensitivity in rice.
    Wu Y; Zhang W; Jiang J
    PLoS Genet; 2014 May; 10(5):e1004378. PubMed ID: 24852592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PlantDHS: a database for DNase I hypersensitive sites in plants.
    Zhang T; Marand AP; Jiang J
    Nucleic Acids Res; 2016 Jan; 44(D1):D1148-53. PubMed ID: 26400163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iDHS-DT: Identifying DNase I hypersensitive sites by integrating DNA dinucleotide and trinucleotide information.
    Zou H; Yang F; Yin Z
    Biophys Chem; 2022 Feb; 281():106717. PubMed ID: 34798459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of DNase I hypersensitive sites in the human genome by multiple sequence descriptors.
    Jin YT; Tan Y; Gan ZH; Hao YD; Wang TY; Lin H; Tang B
    Methods; 2024 Sep; 229():125-132. PubMed ID: 38964595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide mapping of DNase I hypersensitive sites in plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the relationship between intron retention and chromatin accessibility in plants.
    Ullah F; Hamilton M; Reddy ASN; Ben-Hur A
    BMC Genomics; 2018 Jan; 19(1):21. PubMed ID: 29304739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CEPZ: A Novel Predictor for Identification of DNase I Hypersensitive Sites.
    Zheng Y; Wang H; Ding Y; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2768-2774. PubMed ID: 33481716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Identification of Regulatory DNA Elements in Crop Plants.
    Li Z; Wang K
    Methods Mol Biol; 2020; 2072():85-99. PubMed ID: 31541440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale identification of Caenorhabditis elegans regulatory elements by tiling-array mapping of DNase I hypersensitive sites.
    Shi B; Guo X; Wu T; Sheng S; Wang J; Skogerbø G; Zhu X; Chen R
    BMC Genomics; 2009 Feb; 10():92. PubMed ID: 19243610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iDHS-DMCAC: identifying DNase I hypersensitive sites with balanced dinucleotide-based detrending moving-average cross-correlation coefficient.
    Liang Y; Zhang S
    SAR QSAR Environ Res; 2019 Jun; 30(6):429-445. PubMed ID: 31117818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the gene regulatory landscape in diseases through the identification of DNase I-hypersensitive sites.
    Chen Y; Chen A
    Biomed Rep; 2019 Sep; 11(3):87-97. PubMed ID: 31423302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNase I hypersensitivity analysis of the mouse brain and retina identifies region-specific regulatory elements.
    Wilken MS; Brzezinski JA; La Torre A; Siebenthall K; Thurman R; Sabo P; Sandstrom RS; Vierstra J; Canfield TK; Hansen RS; Bender MA; Stamatoyannopoulos J; Reh TA
    Epigenetics Chromatin; 2015; 8():8. PubMed ID: 25972927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.