These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29594496)
21. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines. Abuassba AOM; Zhang D; Luo X; Shaheryar A; Ali H Comput Intell Neurosci; 2017; 2017():3405463. PubMed ID: 28546808 [TBL] [Abstract][Full Text] [Related]
22. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Jin W; Tang Q; Wan M; Cui K; Zhang Y; Ren G; Ni B; Sklar J; Przytycka TM; Childs R; Levens D; Zhao K Nature; 2015 Dec; 528(7580):142-6. PubMed ID: 26605532 [TBL] [Abstract][Full Text] [Related]
23. Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato. Li R; Cui X Methods Mol Biol; 2018; 1830():367-379. PubMed ID: 30043382 [TBL] [Abstract][Full Text] [Related]
24. Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule. Liang Y; Zhang S Biophys Chem; 2019 Oct; 253():106227. PubMed ID: 31325710 [TBL] [Abstract][Full Text] [Related]
25. Functional characterization of open chromatin in bidirectional promoters of rice. Fang Y; Wang X; Wang L; Pan X; Xiao J; Wang XE; Wu Y; Zhang W Sci Rep; 2016 Aug; 6():32088. PubMed ID: 27558448 [TBL] [Abstract][Full Text] [Related]
26. Genome-Wide Characterization of DNase I-Hypersensitive Sites and Cold Response Regulatory Landscapes in Grasses. Han J; Wang P; Wang Q; Lin Q; Chen Z; Yu G; Miao C; Dao Y; Wu R; Schnable JC; Tang H; Wang K Plant Cell; 2020 Aug; 32(8):2457-2473. PubMed ID: 32471863 [TBL] [Abstract][Full Text] [Related]
27. Genome-wide mapping of DNase I hypersensitive sites in pineapple leaves. Ouyang K; Liang Q; Miao L; Zhang Z; Li Z Front Genet; 2023; 14():1086554. PubMed ID: 37470036 [TBL] [Abstract][Full Text] [Related]
28. Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals. Chen A; Chen D; Chen Y Gene; 2018 Aug; 667():83-94. PubMed ID: 29772251 [TBL] [Abstract][Full Text] [Related]
29. Detection of DNA structural motifs in functional genomic elements. Greenbaum JA; Parker SC; Tullius TD Genome Res; 2007 Jun; 17(6):940-6. PubMed ID: 17568009 [TBL] [Abstract][Full Text] [Related]
30. Determinants of nucleosome positioning and their influence on plant gene expression. Liu MJ; Seddon AE; Tsai ZT; Major IT; Floer M; Howe GA; Shiu SH Genome Res; 2015 Aug; 25(8):1182-95. PubMed ID: 26063739 [TBL] [Abstract][Full Text] [Related]
31. Genome-wide mapping of DNase I hypersensitive sites and association analysis with gene expression in MSB1 cells. He Y; Carrillo JA; Luo J; Ding Y; Tian F; Davidson I; Song J Front Genet; 2014; 5():308. PubMed ID: 25352859 [TBL] [Abstract][Full Text] [Related]
32. Correlation between DNase I hypersensitive site distribution and gene expression in HeLa S3 cells. Wang YM; Zhou P; Wang LY; Li ZH; Zhang YN; Zhang YX PLoS One; 2012; 7(8):e42414. PubMed ID: 22900019 [TBL] [Abstract][Full Text] [Related]
34. iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition. Tahir M; Hayat M; Khan SA Mol Genet Genomics; 2019 Feb; 294(1):199-210. PubMed ID: 30291426 [TBL] [Abstract][Full Text] [Related]
35. iDHS-Deep: an integrated tool for predicting DNase I hypersensitive sites by deep neural network. Dao FY; Lv H; Su W; Sun ZJ; Huang QL; Lin H Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33751027 [TBL] [Abstract][Full Text] [Related]
36. Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants. Zhang T; Zhang W; Jiang J Plant Physiol; 2015 Aug; 168(4):1406-16. PubMed ID: 26143253 [TBL] [Abstract][Full Text] [Related]
37. iDHS-FFLG: Identifying DNase I Hypersensitive Sites by Feature Fusion and Local-Global Feature Extraction Network. Wang LS; Sun ZL Interdiscip Sci; 2023 Jun; 15(2):155-170. PubMed ID: 36166165 [TBL] [Abstract][Full Text] [Related]
38. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Wang XJ; Gaasterland T; Chua NH Genome Biol; 2005; 6(4):R30. PubMed ID: 15833117 [TBL] [Abstract][Full Text] [Related]
39. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Sullivan AM; Arsovski AA; Lempe J; Bubb KL; Weirauch MT; Sabo PJ; Sandstrom R; Thurman RE; Neph S; Reynolds AP; Stergachis AB; Vernot B; Johnson AK; Haugen E; Sullivan ST; Thompson A; Neri FV; Weaver M; Diegel M; Mnaimneh S; Yang A; Hughes TR; Nemhauser JL; Queitsch C; Stamatoyannopoulos JA Cell Rep; 2014 Sep; 8(6):2015-2030. PubMed ID: 25220462 [TBL] [Abstract][Full Text] [Related]
40. Effect of deletion of the DNase I hypersensitive sites on the transcription of chicken Ig-beta gene and on the maintenance of active chromatin state in the Ig-beta locus. Matsudo H; Osano K; Arakawa H; Ono M FEBS J; 2005 Jan; 272(2):422-32. PubMed ID: 15654880 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]