These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 29594758)
21. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Zou J; Lan XW; Zhao GQ; Huang ZN; Liu YP; Yu JG Mikrochim Acta; 2020 Nov; 187(11):636. PubMed ID: 33141322 [TBL] [Abstract][Full Text] [Related]
22. Simultaneous voltammetric determination of hydroquinone and catechol by using a glassy carbon electrode modified with a ternary nanocomposite prepared from oxidized multiwalled carbon nanotubes, manganese dioxide and manganese ferrite. Chen S; Huang R; Yu J; Jiang X Mikrochim Acta; 2019 Aug; 186(9):643. PubMed ID: 31444572 [TBL] [Abstract][Full Text] [Related]
23. Electrochemical synthesis of a nanocomposite consisting of carboxy-modified multi-walled carbon nanotubes, polythionine and platinum nanoparticles for simultaneous voltammetric determination of myricetin and rutin. Liu C; Huang J; Wang L Mikrochim Acta; 2018 Aug; 185(9):414. PubMed ID: 30116901 [TBL] [Abstract][Full Text] [Related]
24. Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode. Jia D; Dai J; Yuan H; Lei L; Xiao D Talanta; 2011 Oct; 85(5):2344-51. PubMed ID: 21962652 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous Detection of Hydroquinone and Catechol Using Platinum Nanoparticles Decorated Graphene/Poly-Cyclodextrin/Multiwalled Carbon Nanotubes (MWCNTs) Nanocomposite Based Biosensor. Huang X; Deng X; Qi W; Wu D J Nanosci Nanotechnol; 2018 Dec; 18(12):8118-8123. PubMed ID: 30189928 [TBL] [Abstract][Full Text] [Related]
26. Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Shahrokhian S; Rastgar S Analyst; 2012 Jun; 137(11):2706-15. PubMed ID: 22543355 [TBL] [Abstract][Full Text] [Related]
27. A glassy carbon electrode modified with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin. Ponnaiah SK; Periakaruppan P Mikrochim Acta; 2018 Oct; 185(11):524. PubMed ID: 30374580 [TBL] [Abstract][Full Text] [Related]
28. An electrochemical and computational study for discrimination of D- and L-cystine by reduced graphene oxide/β-cyclodextrin. Zor E; Bingol H; Ramanaviciene A; Ramanavicius A; Ersoz M Analyst; 2015 Jan; 140(1):313-21. PubMed ID: 25382195 [TBL] [Abstract][Full Text] [Related]
29. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation. Oh JW; Yoon YW; Heo J; Yu J; Kim H; Kim TH Talanta; 2016 Jan; 147():453-9. PubMed ID: 26592632 [TBL] [Abstract][Full Text] [Related]
30. Voltammetric determination of caffeic acid by using a glassy carbon electrode modified with a chitosan-protected nanohybrid composed of carbon black and reduced graphene oxide. Pandian K; Mohana Soundari D; Rudra Showdri P; Kalaiyarasi J; Gopinath SCB Mikrochim Acta; 2019 Jan; 186(2):54. PubMed ID: 30618010 [TBL] [Abstract][Full Text] [Related]
31. The hybrids of perylene tetracarboxylic acid functionalized multi-walled carbon nanotubes and chitosan for electrochemical chiral sensing of tryptophan enantiomers. Jing P; Yin ZZ; Cai W; Li J; Wu D; Kong Y Bioelectrochemistry; 2022 Aug; 146():108110. PubMed ID: 35367932 [TBL] [Abstract][Full Text] [Related]
32. A nanocomposite consisting of gold nanobipyramids and multiwalled carbon nanotubes for amperometric nonenzymatic sensing of glucose and hydrogen peroxide. Mei H; Wang X; Zeng T; Huang L; Wang Q; Ru D; Huang T; Tian F; Wu H; Gao J Mikrochim Acta; 2019 Mar; 186(4):235. PubMed ID: 30868243 [TBL] [Abstract][Full Text] [Related]
33. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks. Zhang X; Wang F; Chen Z Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416 [TBL] [Abstract][Full Text] [Related]
34. An electrochemical daunorubicin sensor based on the use of platinum nanoparticles loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes. Kong FY; Li RF; Yao L; Wang ZX; Lv WX; Wang W Mikrochim Acta; 2019 May; 186(5):321. PubMed ID: 31049702 [TBL] [Abstract][Full Text] [Related]
35. Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Tang J; Jiang S; Liu Y; Zheng S; Bai L; Guo J; Wang J Mikrochim Acta; 2018 Oct; 185(10):486. PubMed ID: 30276484 [TBL] [Abstract][Full Text] [Related]
36. Sensitive electrochemical sensor of tryptophan based on Ag@C core-shell nanocomposite modified glassy carbon electrode. Mao S; Li W; Long Y; Tu Y; Deng A Anal Chim Acta; 2012 Aug; 738():35-40. PubMed ID: 22790697 [TBL] [Abstract][Full Text] [Related]
37. Voltammetric determination of copper in seawater at a glassy carbon disk electrode modified with Au@MnO Wei H; Pan D; Hu X; Liu M; Han H; Shen D Mikrochim Acta; 2018 Apr; 185(5):258. PubMed ID: 29680894 [TBL] [Abstract][Full Text] [Related]
38. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Goulart LA; Gonçalves R; Correa AA; Pereira EC; Mascaro LH Mikrochim Acta; 2017 Dec; 185(1):12. PubMed ID: 29594601 [TBL] [Abstract][Full Text] [Related]
39. A biomass-derived porous carbon-based nanocomposite for voltammetric determination of quercetin. Liu J; Li X; Weng W; Xie H; Luo G; Niu Y; Zhang S; Li G; Sun W Mikrochim Acta; 2019 Nov; 186(12):783. PubMed ID: 31732804 [TBL] [Abstract][Full Text] [Related]
40. A highly efficient chiral sensing platform for tryptophan isomers based on a coordination self-assembly. Lei P; Zhou Y; Zhang G; Zhang Y; Zhang C; Hong S; Yang Y; Dong C; Shuang S Talanta; 2019 Apr; 195():306-312. PubMed ID: 30625547 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]