These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 29594779)
1. Automated Inference of Chemical Discriminants of Biological Activity. Raschka S; Scott AM; Huertas M; Li W; Kuhn LA Methods Mol Biol; 2018; 1762():307-338. PubMed ID: 29594779 [TBL] [Abstract][Full Text] [Related]
2. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models. Fang X; Bagui S; Bagui S Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761 [TBL] [Abstract][Full Text] [Related]
3. Comparative Analysis of QSAR-based vs. Chemical Similarity Based Predictors of GPCRs Binding Affinity. Luo M; Wang XS; Tropsha A Mol Inform; 2016 Jan; 35(1):36-41. PubMed ID: 27491652 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning Approaches Toward Building Predictive Models for Small Molecule Modulators of miRNA and Its Utility in Virtual Screening of Molecular Databases. Periwal V; Scaria V Methods Mol Biol; 2017; 1517():155-168. PubMed ID: 27924481 [TBL] [Abstract][Full Text] [Related]
5. Modeling and Deorphanization of Orphan GPCRs. Diaz C; Angelloz-Nicoud P; Pihan E Methods Mol Biol; 2018; 1705():413-429. PubMed ID: 29188576 [TBL] [Abstract][Full Text] [Related]
6. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest. Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522 [TBL] [Abstract][Full Text] [Related]
8. Computational screening for active compounds targeting protein sequences: methodology and experimental validation. Wang F; Liu D; Wang H; Luo C; Zheng M; Liu H; Zhu W; Luo X; Zhang J; Jiang H J Chem Inf Model; 2011 Nov; 51(11):2821-8. PubMed ID: 21955088 [TBL] [Abstract][Full Text] [Related]
9. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification. Islam MA; Pillay TS J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527 [TBL] [Abstract][Full Text] [Related]
10. A Pharmacochaperone-Based High-Throughput Screening Assay for the Discovery of Chemical Probes of Orphan Receptors. Morfa CJ; Bassoni D; Szabo A; McAnally D; Sharir H; Hood BL; Vasile S; Wehrman T; Lamerdin J; Smith LH Assay Drug Dev Technol; 2018 Oct; 16(7):384-396. PubMed ID: 30251873 [TBL] [Abstract][Full Text] [Related]
11. From heptahelical bundle to hits from the Haystack: structure-based virtual screening for GPCR ligands. Kooistra AJ; Roumen L; Leurs R; de Esch IJ; de Graaf C Methods Enzymol; 2013; 522():279-336. PubMed ID: 23374191 [TBL] [Abstract][Full Text] [Related]
12. Function and structure-based screening of compounds, peptides and proteins to identify drug candidates. Malik V; Dhanjal JK; Kumari A; Radhakrishnan N; Singh K; Sundar D Methods; 2017 Dec; 131():10-21. PubMed ID: 28843611 [TBL] [Abstract][Full Text] [Related]
13. Applicability Domain of Active Learning in Chemical Probe Identification: Convergence in Learning from Non-Specific Compounds and Decision Rule Clarification. Polash AH; Nakano T; Takeda S; Brown JB Molecules; 2019 Jul; 24(15):. PubMed ID: 31357419 [TBL] [Abstract][Full Text] [Related]
14. Quantitative structure-activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries. Pham-The H; Casañola-Martin G; Diéguez-Santana K; Nguyen-Hai N; Ngoc NT; Vu-Duc L; Le-Thi-Thu H SAR QSAR Environ Res; 2017 Mar; 28(3):199-220. PubMed ID: 28332438 [TBL] [Abstract][Full Text] [Related]
15. Enabling the hypothesis-driven prioritization of ligand candidates in big databases: Screenlamp and its application to GPCR inhibitor discovery for invasive species control. Raschka S; Scott AM; Liu N; Gunturu S; Huertas M; Li W; Kuhn LA J Comput Aided Mol Des; 2018 Mar; 32(3):415-433. PubMed ID: 29383467 [TBL] [Abstract][Full Text] [Related]
16. Structure-based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement. Pala D; Beuming T; Sherman W; Lodola A; Rivara S; Mor M J Chem Inf Model; 2013 Apr; 53(4):821-35. PubMed ID: 23541165 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. Ma XH; Jia J; Zhu F; Xue Y; Li ZR; Chen YZ Comb Chem High Throughput Screen; 2009 May; 12(4):344-57. PubMed ID: 19442064 [TBL] [Abstract][Full Text] [Related]
18. Beware of machine learning-based scoring functions-on the danger of developing black boxes. Gabel J; Desaphy J; Rognan D J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678 [TBL] [Abstract][Full Text] [Related]
19. Molecular interaction fingerprint approaches for GPCR drug discovery. Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316 [TBL] [Abstract][Full Text] [Related]
20. Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design. Ebalunode JO; Zheng W; Tropsha A Methods Mol Biol; 2011; 685():111-33. PubMed ID: 20981521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]