These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29594853)

  • 61. Versatile software and hardware combo enabling photon counting acquisition and real-time display for multiplexing, 2D and continuous 3D two-photon imaging applications.
    Har-Gil H; Golgher L; Kain D; Blinder P
    Neurophotonics; 2022 Jul; 9(3):031920. PubMed ID: 36159710
    [No Abstract]   [Full Text] [Related]  

  • 62. Measuring the Shape and Size of Activated Sludge Particles Immobilized in Agar with an Open Source Software Pipeline.
    Weaver JE; Williams JC; Ducoste JJ; de Los Reyes FL
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30774142
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Platform for Automated Real-Time High Performance Analytics on Medical Image Data.
    Allen WJ; Gabr RE; Tefera GB; Pednekar AS; Vaughn MW; Narayana PA
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):318-324. PubMed ID: 29505399
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hardware-software co-design of an open-source automatic multimodal whole slide histopathology imaging system.
    Li B; Nelson MS; Chacko JV; Cudworth N; Eliceiri KW
    J Biomed Opt; 2023 Feb; 28(2):026501. PubMed ID: 36761254
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Real time 3D visualization of ultrasonic data using a standard PC.
    Nikolov SI; Pablo Gómez Gonzaléz J; Arendt Jensen J
    Ultrasonics; 2003 Aug; 41(6):421-6. PubMed ID: 12853078
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Real-Time Processing Library for Open-Source Hardware Biomedical Sensors.
    Molina-Cantero AJ; Castro-García JA; Lebrato-Vázquez C; Gómez-González IM; Merino-Monge M
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596394
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Increasing the impact of medical image computing using community-based open-access hackathons: The NA-MIC and 3D Slicer experience.
    Kapur T; Pieper S; Fedorov A; Fillion-Robin JC; Halle M; O'Donnell L; Lasso A; Ungi T; Pinter C; Finet J; Pujol S; Jagadeesan J; Tokuda J; Norton I; Estepar RSJ; Gering D; Aerts HJWL; Jakab M; Hata N; Ibanez L; Blezek D; Miller J; Aylward S; Grimson WEL; Fichtinger G; Wells WM; Lorensen WE; Schroeder W; Kikinis R
    Med Image Anal; 2016 Oct; 33():176-180. PubMed ID: 27498015
    [TBL] [Abstract][Full Text] [Related]  

  • 68. SIMUS: An open-source simulator for medical ultrasound imaging. Part I: Theory & examples.
    Garcia D
    Comput Methods Programs Biomed; 2022 May; 218():106726. PubMed ID: 35339918
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultrasound Open Platforms for Next-Generation Imaging Technique Development.
    Boni E; Yu ACH; Freear S; Jensen JA; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1078-1092. PubMed ID: 29993364
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The LONI Pipeline Processing Environment.
    Rex DE; Ma JQ; Toga AW
    Neuroimage; 2003 Jul; 19(3):1033-48. PubMed ID: 12880830
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A hardware and software system for MRI applications requiring external device data.
    Isaieva K; Fauvel M; Weber N; Vuissoz PA; Felblinger J; Oster J; Odille F
    Magn Reson Med; 2022 Sep; 88(3):1406-1418. PubMed ID: 35506503
    [TBL] [Abstract][Full Text] [Related]  

  • 72. LightProbe: A Digital Ultrasound Probe for Software-Defined Ultrafast Imaging.
    Hager PA; Benini L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Apr; 66(4):747-760. PubMed ID: 30735991
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Web-Based GPU-Accelerated Application for Multiplanar Reconstructions from Conventional 2D Ultrasound.
    Borgbjerg J; Hørlyck A
    Ultraschall Med; 2021 Apr; 42(2):194-201. PubMed ID: 31487752
    [TBL] [Abstract][Full Text] [Related]  

  • 74. From Bench to Bedside: A View on Bioinformatics Pipelines.
    Flores B; Hose D; Seckinger A; Knaup P; Ganzinger M
    Stud Health Technol Inform; 2017; 245():375-378. PubMed ID: 29295119
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment.
    Hemmsen MC; Lange T; Brandt AH; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):206-217. PubMed ID: 27992334
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Minian, an open-source miniscope analysis pipeline.
    Dong Z; Mau W; Feng Y; Pennington ZT; Chen L; Zaki Y; Rajan K; Shuman T; Aharoni D; Cai DJ
    Elife; 2022 Jun; 11():. PubMed ID: 35642786
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Mathematically Generated Noise Technique for Ultrasound Systems.
    Choi H; Shin SH
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560076
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Frame-based Programming, Stream-Based Processing for Medical Image Processing Applications.
    Hoozemans J; de Jong R; van der Vlugt S; Van Straten J; Elango UK; Al-Ars Z
    J Signal Process Syst; 2019; 91(1):47-59. PubMed ID: 30873259
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Architecture for an Ultrasound Advanced Open Platform With an Arbitrary Number of Independent Channels.
    Mazierli D; Ramalli A; Boni E; Guidi F; Tortoli
    IEEE Trans Biomed Circuits Syst; 2021 Jun; 15(3):486-496. PubMed ID: 33956633
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pydpiper: a flexible toolkit for constructing novel registration pipelines.
    Friedel M; van Eede MC; Pipitone J; Chakravarty MM; Lerch JP
    Front Neuroinform; 2014; 8():67. PubMed ID: 25126069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.