BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 29595099)

  • 1. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.
    Mandal AK; Paramkusam BR; Sinha OP
    Waste Manag Res; 2018 Apr; 36(4):351-360. PubMed ID: 29595099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.
    Chindaprasirt P; Rattanasak U
    Waste Manag; 2010 Apr; 30(4):667-72. PubMed ID: 19854038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator.
    Blasenbauer D; Huber F; Mühl J; Fellner J; Lederer J
    Waste Manag; 2023 Apr; 161():142-155. PubMed ID: 36878041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
    Dong H; Jiang X; Lv G; Chi Y; Yan J
    Waste Manag; 2015 Dec; 46():227-33. PubMed ID: 26278370
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Jeong S; Lee T; Lim SJ; Park YK; Kim S; Kim YM
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3764-3768. PubMed ID: 33715688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative lung immunotoxicity of inhaled quartz and coal combustion fly ash.
    Bice DE; Hahn FF; Benson J; Carpenter RL; Hobbs CH
    Environ Res; 1987 Aug; 43(2):374-89. PubMed ID: 3038511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Emission Characteristics and Toxicity Effects of Halogenated Polycyclic Aromatic Hydrocarbons from Coal-Fired and Waste Incineration Power Plants].
    Ni XF; Wang RW; Cai FX; Cai JW
    Huan Jing Ke Xue; 2021 Apr; 42(4):1660-1667. PubMed ID: 33742801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentially toxic elements in fly ash dependently of applied technology of hard coal combustion.
    Smolka-Danielowska D; Fiedor D
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25091-25097. PubMed ID: 29938326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.
    García Arenas C; Marrero M; Leiva C; Solís-Guzmán J; Vilches Arenas LF
    Waste Manag; 2011 Aug; 31(8):1783-9. PubMed ID: 21511456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geotechnical properties of products of alternative fuel combustion and co-firing with hard coal in the context of their use as solidifying dense mixtures.
    Stefaniak S; Kmiecik E; Miszczak E; Plewa F; Twardowska I
    Waste Manag Res; 2018 Dec; 36(12):1127-1136. PubMed ID: 30375270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of PAHs in coal ashes from the thermal power plant and fluidized bed combustion system; estimation of environmental risk of ash disposal.
    Buha-Marković JZ; Marinković AD; Nemoda SĐ; Savić JZ
    Environ Pollut; 2020 Nov; 266(Pt 3):115282. PubMed ID: 32799176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-combustion of distillery sludge and coal for application in boiler and subsequent utilization of the generated bottom ash.
    Dhote L; Pandey RA; Middey A; Mandal N; Kumar S
    Environ Sci Pollut Res Int; 2021 Jul; 28(27):36742-36752. PubMed ID: 33710486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fly ash classification efficiency of electrostatic precipitators in fluidized bed combustion of peat, wood, and forest residues.
    Ohenoja K; Körkkö M; Wigren V; Österbacka J; Illikainen M
    J Environ Manage; 2018 Jan; 206():607-614. PubMed ID: 29132083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of physicochemical and hydromechanical properties of MSWI bottom ash for road construction.
    Le NH; Razakamanantsoa A; Nguyen ML; Phan VT; Dao PL; Nguyen DH
    Waste Manag; 2018 Oct; 80():168-174. PubMed ID: 30454996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutagenicity and cytotoxicity of coal fly ash from fluidized-bed and conventional combustion.
    Mumford JL; Lewtas J
    J Toxicol Environ Health; 1982; 10(4-5):565-86. PubMed ID: 6761446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of thermal insulation blocks from bottom ash of fluidized bed combustion system.
    Mandal AK; Sinha OP
    Waste Manag Res; 2017 Aug; 35(8):810-819. PubMed ID: 28539100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on gaseous pollutants emissions during co-combustion of coal and wheat straw in a fluidized bed combustor.
    Xue Z; Zhong Z; Lai X
    Chemosphere; 2020 Feb; 240():124853. PubMed ID: 31563712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of Cr(VI) in ashes from fluidized bed combustion of municipal solid waste: leaching, secondary reactions and the applicability of some speciation methods.
    Abbas ZA; Steenari BM; Lindqvist O
    Waste Manag; 2001; 21(8):725-39. PubMed ID: 11699630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorbable organic halogens (AOXs) in solid residues from hazardous and clinical waste incineration.
    Durmusoglu E; Bakoglu M; Karademir A; Kirli L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1699-714. PubMed ID: 16835121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers.
    Arenas C; Leiva C; Vilches LF; Cifuentes H
    Waste Manag; 2013 Nov; 33(11):2316-21. PubMed ID: 23916843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.