These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29595245)

  • 1. Stimuli-Responsive DNA Microcapsules for SERS Sensing of Trace MicroRNA.
    Yang X; Wang S; Wang Y; He Y; Chai Y; Yuan R
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12491-12496. PubMed ID: 29595245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switchable Target-Responsive 3D DNA Hydrogels As a Signal Amplification Strategy Combining with SERS Technique for Ultrasensitive Detection of miRNA 155.
    He Y; Yang X; Yuan R; Chai Y
    Anal Chem; 2017 Aug; 89(16):8538-8544. PubMed ID: 28745490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimuli-responsive SERS biosensor for ultrasensitive tetracycline sensing using EDTA-driven PEI@CaCO
    Li H; Geng W; Qi Z; Ahmad W; Haruna SA; Chen Q
    Biosens Bioelectron; 2023 Apr; 226():115122. PubMed ID: 36796305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Porous Magnetic Ni@C Nanospheres and CaCO
    Wang S; Luo J; He Y; Chai Y; Yuan R; Yang X
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33707-33712. PubMed ID: 30182714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic-based SERS biosensor with multifunctional nanosurface immobilized nanoparticles for sensitive detection of MicroRNA.
    Ma W; Liu L; Zhang X; Liu X; Xu Y; Li S; Zeng M
    Anal Chim Acta; 2022 Aug; 1221():340139. PubMed ID: 35934371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering.
    Ma D; Huang C; Zheng J; Tang J; Li J; Yang J; Yang R
    Biosens Bioelectron; 2018 Mar; 101():167-173. PubMed ID: 29073517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe₃O₄@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells.
    Pang Y; Wang C; Wang J; Sun Z; Xiao R; Wang S
    Biosens Bioelectron; 2016 May; 79():574-80. PubMed ID: 26749099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target-triggered configuration change of DNA tetrahedron for SERS assay of microRNA 122.
    Wang S; Wu C; Luo J; Luo X; Yuan R; Yang X
    Mikrochim Acta; 2020 Jul; 187(8):460. PubMed ID: 32686039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iodide-modified Ag nanoparticles coupled with DSN-Assisted cycling amplification for label-free and ultrasensitive SERS detection of MicroRNA-21.
    Yao Y; Zhang H; Tian T; Liu Y; Zhu R; Ji J; Liu B
    Talanta; 2021 Dec; 235():122728. PubMed ID: 34517596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous detection of tumor-related mRNA and miRNA in cancer cells with magnetic SERS nanotags.
    Li M; Li J; Zhang X; Yao M; Li P; Xu W
    Talanta; 2021 Sep; 232():122432. PubMed ID: 34074418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform.
    Zhao Q; Piao J; Peng W; Wang Y; Zhang B; Gong X; Chang J
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3324-3332. PubMed ID: 29300448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel ratiometric SERS biosensor with one Raman probe for ultrasensitive microRNA detection based on DNA hydrogel amplification.
    He Y; Yang X; Yuan R; Chai Y
    J Mater Chem B; 2019 Apr; 7(16):2643-2647. PubMed ID: 32254997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method.
    Zhang K; Wang K; Zhu X; Xu F; Xie M
    Biosens Bioelectron; 2017 Jan; 87():358-364. PubMed ID: 27589398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli-responsive hydrogel microcapsules for the amplified detection of microRNAs.
    Chang WH; Lee YF; Liu YW; Willner I; Liao WC
    Nanoscale; 2021 Oct; 13(39):16799-16808. PubMed ID: 34605515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric detection of microRNA based on DNAzyme and nuclease-assisted catalytic hairpin assembly signal amplification.
    Zhang H; Wang K; Bu S; Li Z; Ju C; Wan J
    Mol Cell Probes; 2018 Apr; 38():13-18. PubMed ID: 29458177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive and reliable detection of microRNA for clinically disease surveillance using SERS biosensor integrated with catalytic hairpin assembly amplification technology.
    Weng S; Lin D; Lai S; Tao H; Chen T; Peng M; Qiu S; Feng S
    Biosens Bioelectron; 2022 Jul; 208():114236. PubMed ID: 35381457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target MicroRNA-Responsive DNA Hydrogel-Based Surface-Enhanced Raman Scattering Sensor Arrays for MicroRNA-Marked Cancer Screening.
    Si Y; Xu L; Wang N; Zheng J; Yang R; Li J
    Anal Chem; 2020 Feb; 92(3):2649-2655. PubMed ID: 31920078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive SERS detection of miRNA via enzyme-free DNA machine signal amplification.
    Li X; Ye S; Luo X
    Chem Commun (Camb); 2016 Aug; 52(67):10269-72. PubMed ID: 27469084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A portable SERS reader coupled with catalytic hairpin assembly for sensitive microRNA-21 lateral flow sensing.
    Wang W; Li Y; Nie A; Fan GC; Han H
    Analyst; 2021 Feb; 146(3):848-854. PubMed ID: 33319869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Construction of microRNA-21 terahertz metamaterial sensing method based on duplex-specific nuclease triggered rolling circle amplification].
    Zhan XY; Yang S; Zhang Y; Yang X; Fu WL
    Zhonghua Yu Fang Yi Xue Za Zhi; 2021 Feb; 55(2):212-218. PubMed ID: 34645182
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.