These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29595255)

  • 1. Linking Thermodynamics to Pollutant Reduction Kinetics by Fe
    Stewart SM; Hofstetter TB; Joshi P; Gorski CA
    Environ Sci Technol; 2018 May; 52(10):5600-5609. PubMed ID: 29595255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Carbonate in Thermodynamic Relationships Describing Pollutant Reduction Kinetics by Iron Oxide-Bound Fe
    Chen G; Hofstetter TB; Gorski CA
    Environ Sci Technol; 2020 Aug; 54(16):10109-10117. PubMed ID: 32667790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediated Electrochemical Reduction of Iron (Oxyhydr-)Oxides under Defined Thermodynamic Boundary Conditions.
    Aeppli M; Voegelin A; Gorski CA; Hofstetter TB; Sander M
    Environ Sci Technol; 2018 Jan; 52(2):560-570. PubMed ID: 29200267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear Free Energy Relationship for Predicting the Rate Constants of Munition Compound Reduction by the Fe(II)-Hematite and Fe(II)-Goethite Redox Couples.
    Cárdenas-Hernández PA; Hickey K; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC
    Environ Sci Technol; 2023 Sep; 57(36):13646-13657. PubMed ID: 37610109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic Two-Site Surface Reaction Model for Predicting Munition Constituent Reduction Kinetics with Iron (Oxyhydr)oxides.
    Hickey KP; Cardenas-Hernandez P; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC
    Environ Sci Technol; 2023 Aug; 57(33):12411-12420. PubMed ID: 37566737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facet-dependent Fe(II) redox chemistry on iron oxide for organic pollutant transformation and mechanisms.
    Hao T; Huang Y; Li F; Wu Y; Fang L
    Water Res; 2022 Jul; 219():118587. PubMed ID: 35605391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.
    Gorski CA; Edwards R; Sander M; Hofstetter TB; Stewart SM
    Environ Sci Technol; 2016 Aug; 50(16):8538-47. PubMed ID: 27427506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides.
    Jeon BH; Dempsey BA; Burgos WD
    Environ Sci Technol; 2003 Aug; 37(15):3309-15. PubMed ID: 12966975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR study of the reduction of nitroaromatics by Fe(II) species.
    Colón D; Weber EJ; Anderson JL
    Environ Sci Technol; 2006 Aug; 40(16):4976-82. PubMed ID: 16955895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reduction of nitrobenzene by Fe(II)-goethite-hematite heterogeneous systems: Insight from thermodynamic parameters of reduction potential.
    Li X; Niu A; Yang S; Liu F
    J Environ Manage; 2024 Sep; 370():122404. PubMed ID: 39250851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of 3-Nitro-1,2,4-Triazol-5-One (NTO) by the Hematite-Aqueous Fe(II) Redox Couple.
    Cárdenas-Hernández PA; Anderson KA; Murillo-Gelvez J; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC
    Environ Sci Technol; 2020 Oct; 54(19):12191-12201. PubMed ID: 32902277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Reduction of nitrobenzene by iron oxides bound Fe(II) system at different pH values].
    Luan FB; Xie L; Li J; Zhou Q
    Huan Jing Ke Xue; 2009 Jul; 30(7):1937-41. PubMed ID: 19774988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron oxide surface-catalyzed oxidation of ferrous iron by monochloramine: implications of oxide type and carbonate on reactivity.
    Vikesland PJ; Valentine RL
    Environ Sci Technol; 2002 Feb; 36(3):512-9. PubMed ID: 11871569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Analysis of Changes in Iron Oxide Reducibility during Abiotic Ferrihydrite Transformation into Goethite and Magnetite.
    Aeppli M; Kaegi R; Kretzschmar R; Voegelin A; Hofstetter TB; Sander M
    Environ Sci Technol; 2019 Apr; 53(7):3568-3578. PubMed ID: 30758207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate.
    Liu C; Zachara JM; Foster NS; Strickland J
    Environ Sci Technol; 2007 Nov; 41(22):7730-5. PubMed ID: 18075081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides.
    Pecher K; Haderlein SB; Schwarzenbach RP
    Environ Sci Technol; 2002 Apr; 36(8):1734-41. PubMed ID: 11993871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles: Iron Reduction versus Surface Catalysis.
    Krumina L; Lyngsie G; Tunlid A; Persson P
    Environ Sci Technol; 2017 Aug; 51(16):9053-9061. PubMed ID: 28691796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid.
    Jang JH; Dempsey BA; Burgos WD
    Water Res; 2008 Apr; 42(8-9):2269-77. PubMed ID: 18191438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.