These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29595257)

  • 1. Azoreductase and Target Simultaneously Activated Fluorescent Monitoring for Cytochrome c Release under Hypoxia.
    Tang J; Huang C; Shu J; Zheng J; Ma D; Li J; Yang R
    Anal Chem; 2018 May; 90(9):5865-5872. PubMed ID: 29595257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Enhanced Raman Scattering-Fluorescence Dual-Mode Nanosensors for Quantitative Detection of Cytochrome c in Living Cells.
    Zhang J; Ma X; Wang Z
    Anal Chem; 2019 May; 91(10):6600-6607. PubMed ID: 31026147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescent nanoprobe based on azoreductase-responsive metal-organic frameworks for imaging VEGF mRNA under hypoxic conditions.
    Liu N; Zou Z; Liu J; Zhu C; Zheng J; Yang R
    Analyst; 2019 Oct; 144(21):6254-6261. PubMed ID: 31560359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells.
    Ma L; Liu F; Lei Z; Wang Z
    Biosens Bioelectron; 2017 Jan; 87():638-645. PubMed ID: 27619527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Early Stage Apoptotic Cells Based on Label-Free Cytochrome c Assay Using Bioconjugated Metal Nanoclusters as Fluorescent Probes.
    Shamsipur M; Molaabasi F; Hosseinkhani S; Rahmati F
    Anal Chem; 2016 Feb; 88(4):2188-97. PubMed ID: 26812937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer-based colorimetric determination of early-stage apoptotic cells via the release of cytochrome c from mitochondria and by exploiting silver/platinum alloy nanoclusters as a peroxidase mimic.
    Borghei YS; Hosseinkhani S
    Mikrochim Acta; 2019 Nov; 186(12):845. PubMed ID: 31768654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor.
    Chen TT; Tian X; Liu CL; Ge J; Chu X; Li Y
    J Am Chem Soc; 2015 Jan; 137(2):982-9. PubMed ID: 25548948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graphene oxide nanosensor enables the co-delivery of aptamer and peptide probes for fluorescence imaging of a cascade reaction in apoptotic signaling.
    Liu C; Hu YL; Deng WJ; Pan QS; Yi JT; Chen TT; Chu X
    Analyst; 2017 Dec; 143(1):208-214. PubMed ID: 29188239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective imaging of lysosomal azoreductase under hypoxia using pH-regulated and target-activated fluorescent nanoprobes.
    Zhu C; Zou Z; Huang C; Zheng J; Liu N; Li J; Yang R
    Chem Commun (Camb); 2019 Mar; 55(22):3235-3238. PubMed ID: 30809609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azoreductase-Responsive Nanoprobe for Hypoxia-Induced Mitophagy Imaging.
    Ma D; Huang C; Zheng J; Zhou W; Tang J; Chen W; Li J; Yang R
    Anal Chem; 2019 Jan; 91(2):1360-1367. PubMed ID: 30565448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-based CdTe nanosensor for sensitive detection of cytochrome C.
    Amin RM; Elfeky SA; Verwanger T; Krammer B
    Biosens Bioelectron; 2017 Dec; 98():415-420. PubMed ID: 28711028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free fluorescence imaging of cytochrome c in living systems and anti-cancer drug screening with nitrogen doped carbon quantum dots.
    Zhang H; Zhang B; Di C; Ali MC; Chen J; Li Z; Si J; Zhang H; Qiu H
    Nanoscale; 2018 Mar; 10(11):5342-5349. PubMed ID: 29509193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Stimulus-Triggered Release and Active Targeting Strategies Improves Cytotoxicity of Cytochrome c Nanoparticles in Tumor Cells.
    Morales-Cruz M; Cruz-Montañez A; Figueroa CM; González-Robles T; Davila J; Inyushin M; Loza-Rosas SA; Molina AM; Muñoz-Perez L; Kucheryavykh LY; Tinoco AD; Griebenow K
    Mol Pharm; 2016 Aug; 13(8):2844-54. PubMed ID: 27283751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azoreductase-Responsive Metal-Organic Framework-Based Nanodrug for Enhanced Cancer Therapy via Breaking Hypoxia-induced Chemoresistance.
    Huang C; Tan W; Zheng J; Zhu C; Huo J; Yang R
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25740-25749. PubMed ID: 31251022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of adenosine triphosphate based on the use of fluorescent terbium(III) organic frameworks and aptamer modified gold nanoparticles.
    Sun C; Zhao S; Qu F; Han W; You J
    Mikrochim Acta; 2019 Dec; 187(1):34. PubMed ID: 31814046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium Carbonate Mineralized Nanoparticles as an Intracellular Transporter of Cytochrome c for Cancer Therapy.
    Koo AN; Min KH; Lee HJ; Jegal JH; Lee JW; Lee SC
    Chem Asian J; 2015 Nov; 10(11):2380-7. PubMed ID: 26235642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PI3K inhibition in neonatal rat brain slices during and after hypoxia reduces phospho-Akt and increases cytosolic cytochrome c and apoptosis.
    Hirai K; Hayashi T; Chan PH; Zeng J; Yang GY; Basus VJ; James TL; Litt L
    Brain Res Mol Brain Res; 2004 Apr; 124(1):51-61. PubMed ID: 15093685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Striking improvement in peroxidase activity of cytochrome c by modulating hydrophobicity of surface-functionalized gold nanoparticles within cationic reverse micelles.
    Maiti S; Das K; Dutta S; Das PK
    Chemistry; 2012 Nov; 18(47):15021-30. PubMed ID: 23018861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective and sensitive detection of intracellular O2(•-) using Au NPs/cytochrome c as SERS nanosensors.
    Qu LL; Li DW; Qin LX; Mu J; Fossey JS; Long YT
    Anal Chem; 2013 Oct; 85(20):9549-55. PubMed ID: 24047198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.