These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29595306)

  • 1. Sensory substitution: Using a vibrotactile device to orient and walk to targets.
    Lobo L; Travieso D; Jacobs DM; Rodger M; Craig CM
    J Exp Psychol Appl; 2018 Mar; 24(1):108-124. PubMed ID: 29595306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast, accurate reaching movements with a visual-to-auditory sensory substitution device.
    Levy-Tzedek S; Hanassy S; Abboud S; Maidenbaum S; Amedi A
    Restor Neurol Neurosci; 2012; 30(4):313-23. PubMed ID: 22596353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action-contingent vibrotactile flow facilitates the detection of ground level obstacles with a partly virtual sensory substitution device.
    Díaz A; Barrientos A; Jacobs DM; Travieso D
    Hum Mov Sci; 2012 Dec; 31(6):1571-84. PubMed ID: 22939849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory substitution: The affordance of passability, body-scaled perception, and exploratory movements.
    de Paz C; Travieso D; Ibáñez-Gijón J; Bravo M; Lobo L; Jacobs DM
    PLoS One; 2019; 14(3):e0213342. PubMed ID: 30917133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory substitution information informs locomotor adjustments when walking through apertures.
    Kolarik AJ; Timmis MA; Cirstea S; Pardhan S
    Exp Brain Res; 2014 Mar; 232(3):975-84. PubMed ID: 24370580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional performance of a vibrotactile sensory substitution device in people with profound vision loss.
    Jin R; Petoe MA; McCarthy CD; Stefopoulos S; Battiwalla X; McGinley J; Ayton LN
    Optom Vis Sci; 2024 Jun; 101(6):358-367. PubMed ID: 38990235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepping on obstacles with a sensory substitution device on the lower leg: practice without vision is more beneficial than practice with vision.
    Lobo L; Travieso D; Barrientos A; Jacobs DM
    PLoS One; 2014; 9(6):e98801. PubMed ID: 24901843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-training program for sensory substitution devices.
    Buchs G; Haimler B; Kerem M; Maidenbaum S; Braun L; Amedi A
    PLoS One; 2021; 16(4):e0250281. PubMed ID: 33905446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibration influences haptic perception of surface compliance during walking.
    Visell Y; Giordano BL; Millet G; Cooperstock JR
    PLoS One; 2011 Mar; 6(3):e17697. PubMed ID: 21464979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
    Vallis LA; Patla AE
    Exp Brain Res; 2004 Jul; 157(1):94-110. PubMed ID: 15146304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of a visual-to-auditory sensory substitution device using interactive genetic algorithms.
    Wright T; Ward J
    Q J Exp Psychol (Hove); 2013 Aug; 66(8):1620-38. PubMed ID: 23298393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A direct comparison of sound and vibration as sources of stimulation for a sensory substitution glove.
    de Paz C; Travieso D
    Cogn Res Princ Implic; 2023 Jul; 8(1):41. PubMed ID: 37402032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action control while seeing mirror images of one's own movements: effects of perspective on spatial compatibility.
    Sutter C; Müsseler J
    Q J Exp Psychol (Hove); 2010 Sep; 63(9):1757-69. PubMed ID: 20175024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path.
    Glasauer S; Amorim MA; Viaud-Delmon I; Berthoz A
    Exp Brain Res; 2002 Aug; 145(4):489-97. PubMed ID: 12172660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid online correction is selectively suppressed during movement with a visuomotor transformation.
    Gritsenko V; Kalaska JF
    J Neurophysiol; 2010 Dec; 104(6):3084-104. PubMed ID: 20844106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trunk muscle proprioceptive input assists steering of locomotion.
    Schmid M; De Nunzio AM; Schieppati M
    Neurosci Lett; 2005 Aug 12-19; 384(1-2):127-32. PubMed ID: 15885899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moving one's finger to a visually specified position: target orientation influences the finger's path.
    Brenner E; Smeets JB
    Exp Brain Res; 1995; 105(2):318-20. PubMed ID: 7498385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.
    Eikema DJ; Chien JH; Stergiou N; Myers SA; Scott-Pandorf MM; Bloomberg JJ; Mukherjee M
    Exp Brain Res; 2016 Feb; 234(2):511-22. PubMed ID: 26525712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.