These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29595519)

  • 1. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS
    Yu K; Yang Y; Wang J; Tang X; Xu QH; Wang GP
    Nanotechnology; 2018 Jun; 29(25):255703. PubMed ID: 29595519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted synthesis of highly luminescent AgInS
    Xiong WW; Yang GH; Wu XC; Zhu JJ
    J Mater Chem B; 2013 Sep; 1(33):4160-4165. PubMed ID: 32260969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two blinking mechanisms in highly confined AgInS2 and AgInS2/ZnS quantum dots evaluated by single particle spectroscopy.
    Cichy B; Rich R; Olejniczak A; Gryczynski Z; Strek W
    Nanoscale; 2016 Feb; 8(7):4151-9. PubMed ID: 26866468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ternary Metal Chalcogenides: Into the Exciton and Biexciton Dynamics.
    Debnath T; Ghosh HN
    J Phys Chem Lett; 2019 Oct; 10(20):6227-6238. PubMed ID: 31556303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandgap and Structure Engineering via Cation Exchange: From Binary Ag2S to Ternary AgInS2, Quaternary AgZnInS alloy and AgZnInS/ZnS Core/Shell Fluorescent Nanocrystals for Bioimaging.
    Song J; Ma C; Zhang W; Li X; Zhang W; Wu R; Cheng X; Ali A; Yang M; Zhu L; Xia R; Xu X
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24826-36. PubMed ID: 27575872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-shelling AgInS
    Loan NT; Huong TTT; Luong MA; Van Long L; Han H; Ung TDT; Liem NQ
    Nanotechnology; 2023 May; 34(31):. PubMed ID: 37130513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AgInS
    Kobosko SM; Jara DH; Kamat PV
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33379-33388. PubMed ID: 28157296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of Photoluminescence and XAFS Study of (ZnS)1-x(AgInS2)x Nanocrystals.
    Rao MJ; Shibata T; Chattopadhyay S; Nag A
    J Phys Chem Lett; 2014 Jan; 5(1):167-73. PubMed ID: 26276197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-Dependent Excitonic Photoluminescence and Nonlinear Absorption of CdTe Nanocrystal/Polyvinyl Alcohol Films.
    Chang Q; Sui J; Chai Z; Wu W
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FRET-Based Analysis of AgInS
    Miropoltsev M; Kuznetsova V; Tkach A; Cherevkov S; Sokolova A; Osipova V; Gromova Y; Baranov M; Fedorov A; Gun'ko Y; Baranov A
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33302496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AgInS
    Kipkorir A; Ealey G; Yu Y; Kamat PV
    Langmuir; 2024 Jan; 40(2):1373-1380. PubMed ID: 38157564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Photoluminescence Tunable Cu-doped AgInS
    Chen S; Demillo V; Lu M; Zhu X
    RSC Adv; 2016; 6(56):51161-51170. PubMed ID: 27293549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step synthesis of water-soluble AgInS2 and ZnS-AgInS2 composite nanocrystals and their photocatalytic activities.
    Luo Z; Zhang H; Huang J; Zhong X
    J Colloid Interface Sci; 2012 Jul; 377(1):27-33. PubMed ID: 22542007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of Sub-Bandgap States in Subpicosecond Exciton and Biexciton Dynamics of Ternary AgInS2 Nanocrystals.
    Dana J; Debnath T; Ghosh HN
    J Phys Chem Lett; 2016 Aug; 7(16):3206-14. PubMed ID: 27472249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the optical and structural properties of ZnS-AgInS2 nanocrystals by using a photo-induced process.
    Yatsui T; Morigaki F; Kawazoe T
    Beilstein J Nanotechnol; 2014; 5():1767-73. PubMed ID: 25383288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing the synthesis of red- and near-infrared CuInS2 and AgInS2 semiconductor nanocrystals for bioimaging.
    Liu L; Hu R; Law WC; Roy I; Zhu J; Ye L; Hu S; Zhang X; Yong KT
    Analyst; 2013 Oct; 138(20):6144-53. PubMed ID: 23967444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of AgInS
    Gromova Y; Sokolova A; Kurshanov D; Korsakov I; Osipova V; Cherevkov S; Dubavik A; Maslov V; Perova T; Gun'ko Y; Baranov A; Fedorov A
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31689939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots.
    Sun J; Ikezawa M; Wang X; Jing P; Li H; Zhao J; Masumoto Y
    Phys Chem Chem Phys; 2015 May; 17(18):11981-9. PubMed ID: 25728207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoluminescence properties of AgInS2-ZnS nanocrystals: the critical role of the surface.
    Chevallier T; Le Blevennec G; Chandezon F
    Nanoscale; 2016 Apr; 8(14):7612-20. PubMed ID: 26985657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals.
    Corrado C; Jiang Y; Oba F; Kozina M; Bridges F; Zhang JZ
    J Phys Chem A; 2009 Apr; 113(16):3830-9. PubMed ID: 19170574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.