These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 29596037)
21. Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor. Ohyabu Y; Kida N; Kojima H; Taguchi T; Tanaka J; Uemura T Biotechnol Bioeng; 2006 Dec; 95(5):1003-8. PubMed ID: 16986169 [TBL] [Abstract][Full Text] [Related]
22. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation. Zhang C; Li L; Chen J; Wang J Cell Biol Int; 2015 Jun; 39(6):647-56. PubMed ID: 25712570 [TBL] [Abstract][Full Text] [Related]
23. Artificial tissue creation under microgravity conditions: Considerations and future applications. Swaminathan V; Bechtel G; Tchantchaleishvili V Artif Organs; 2021 Dec; 45(12):1446-1455. PubMed ID: 34223657 [TBL] [Abstract][Full Text] [Related]
24. The effects of microgravity on stem cells and the new insights it brings to tissue engineering and regenerative medicine. Nie HY; Ge J; Liu KG; Yue Y; Li H; Lin HG; Yan HF; Zhang T; Sun HW; Yang JW; Zhou JL; Cui Y Life Sci Space Res (Amst); 2024 May; 41():1-17. PubMed ID: 38670635 [TBL] [Abstract][Full Text] [Related]
25. Structural and Molecular Changes of Human Chondrocytes Exposed to the Rotating Wall Vessel Bioreactor. Steinwerth P; Bertrand J; Sandt V; Marchal S; Sahana J; Bollmann M; Schulz H; Kopp S; Grimm D; Wehland M Biomolecules; 2023 Dec; 14(1):. PubMed ID: 38254625 [TBL] [Abstract][Full Text] [Related]
26. Effect of Weightlessness on the 3D Structure Formation and Physiologic Function of Human Cancer Cells. Chen ZY; Guo S; Li BB; Jiang N; Li A; Yan HF; Yang HM; Zhou JL; Li CL; Cui Y Biomed Res Int; 2019; 2019():4894083. PubMed ID: 31073526 [TBL] [Abstract][Full Text] [Related]
27. Growth of Endothelial Cells in Space and in Simulated Microgravity - a Comparison on the Secretory Level. Krüger M; Pietsch J; Bauer J; Kopp S; Carvalho DTO; Baatout S; Moreels M; Melnik D; Wehland M; Egli M; Jayashree S; Kobberø SD; Corydon TJ; Nebuloni S; Gass S; Evert M; Infanger M; Grimm D Cell Physiol Biochem; 2019; 52(5):1039-1060. PubMed ID: 30977987 [TBL] [Abstract][Full Text] [Related]
28. Strategies of Manipulating BMP Signaling in Microgravity to Prevent Bone Loss. Siamwala JH; Rajendran S; Chatterjee S Vitam Horm; 2015; 99():249-72. PubMed ID: 26279379 [TBL] [Abstract][Full Text] [Related]
29. Bone mechanobiology, gravity and tissue engineering: effects and insights. Ruggiu A; Cancedda R J Tissue Eng Regen Med; 2015 Dec; 9(12):1339-51. PubMed ID: 25052837 [TBL] [Abstract][Full Text] [Related]
30. An update to space biomedical research: tissue engineering in microgravity bioreactors. Barzegari A; Saei AA Bioimpacts; 2012; 2(1):23-32. PubMed ID: 23678438 [TBL] [Abstract][Full Text] [Related]
31. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. Navran S Biotechnol Annu Rev; 2008; 14():275-96. PubMed ID: 18606368 [TBL] [Abstract][Full Text] [Related]
32. Development of a Multicellular Three-dimensional Organotypic Model of the Human Intestinal Mucosa Grown Under Microgravity. Salerno-Goncalves R; Fasano A; Sztein MB J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500889 [TBL] [Abstract][Full Text] [Related]
33. Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Kraft TF; van Loon JJ; Kiss JZ Planta; 2000 Aug; 211(3):415-22. PubMed ID: 10987561 [TBL] [Abstract][Full Text] [Related]
34. Microgravity studies of cells and tissues. Vunjak-Novakovic G; Searby N; De Luis J; Freed LE Ann N Y Acad Sci; 2002 Oct; 974():504-17. PubMed ID: 12446344 [TBL] [Abstract][Full Text] [Related]
35. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Martinez EM; Yoshida MC; Candelario TL; Hughes-Fulford M Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(6):R480-8. PubMed ID: 25568077 [TBL] [Abstract][Full Text] [Related]
36. Simulated microgravity conditions enhance differentiation of cultured PC12 cells towards the neuroendocrine phenotype. Lelkes PI; Galvan DL; Hayman GT; Goodwin TJ; Chatman DY; Cherian S; Garcia RM; Unsworth BR In Vitro Cell Dev Biol Anim; 1998 Apr; 34(4):316-25. PubMed ID: 9590505 [TBL] [Abstract][Full Text] [Related]
37. Rhythmicity of engraftment and altered cell cycle kinetics of cytokine-cultured murine marrow in simulated microgravity compared with static cultures. Colvin GA; Lambert JF; Carlson JE; McAuliffe CI; Abedi M; Quesenberry PJ In Vitro Cell Dev Biol Anim; 2002 Jun; 38(6):343-51. PubMed ID: 12513122 [TBL] [Abstract][Full Text] [Related]
38. Molecular genetic analysis of neural stem cells after space flight and simulated microgravity on earth. Han Y; Zeger L; Tripathi R; Egli M; Ille F; Lockowandt C; Florin G; Atic E; Redwan IN; Fredriksson R; Kozlova EN Biotechnol Bioeng; 2021 Oct; 118(10):3832-3846. PubMed ID: 34125436 [TBL] [Abstract][Full Text] [Related]
39. Microgravity simulations with human lymphocytes in the free fall machine and in the random positioning machine. Schwarzenberg M; Pippia P; Meloni MA; Cossu G; Cogoli-Greuter M; Cogoli A J Gravit Physiol; 1998 Jul; 5(1):P23-6. PubMed ID: 11542350 [TBL] [Abstract][Full Text] [Related]
40. Effect of Culture in Simulated Microgravity on the Development of Mouse Embryonic Testes. Nowacki D; Klinger FG; Mazur G; De Felici M Adv Clin Exp Med; 2015; 24(5):769-74. PubMed ID: 26768626 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]