These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 2959635)
21. The biosynthetic incorporation of short-chain linear saturated fatty acids by Acholeplasma laidlawii B may suppress cell growth by perturbing membrane lipid polar headgroup distribution. Cheng XL; Tran QM; Foht PJ; Lewis RN; McElhaney RN Biochemistry; 2002 Jul; 41(27):8665-71. PubMed ID: 12093284 [TBL] [Abstract][Full Text] [Related]
22. The effect of cholesterol on the phase structure of glucolipids from Acholeplasma laidlawii membranes. Khan A; Rilfors L; Wieslander A; Lindblom G Eur J Biochem; 1981 May; 116(2):215-20. PubMed ID: 7250125 [TBL] [Abstract][Full Text] [Related]
23. Calorimetric studies of the thermotropic phase behavior of cells, membranes and lipids from fatty acid-homogeneous Acholeplasma laidlawii B. Seguin C; Lewis RN; Mantsch HH; McElhaney RN Isr J Med Sci; 1987 May; 23(5):403-7. PubMed ID: 3667217 [TBL] [Abstract][Full Text] [Related]
24. The influence of membrane lipid structure on plasma membrane Ca2+ -ATPase activity. Tang D; Dean WL; Borchman D; Paterson CA Cell Calcium; 2006 Mar; 39(3):209-16. PubMed ID: 16412504 [TBL] [Abstract][Full Text] [Related]
25. Role of membrane defects in the regulation of the activity of protein kinase C. Senisterra G; Epand RM Arch Biochem Biophys; 1993 Jan; 300(1):378-83. PubMed ID: 8424671 [TBL] [Abstract][Full Text] [Related]
26. The effect of variations in growth temperature, fatty acid composition and cholesterol content on the lipid polar head-group composition of Acholeplasma laidlawii B membranes. Bhakoo M; McElhaney RN Biochim Biophys Acta; 1988 Nov; 945(2):307-14. PubMed ID: 3191126 [TBL] [Abstract][Full Text] [Related]
27. Lipid-protein interactions of reconstituted membrane-associated adenosinetriphosphatases. Use of a gel-filtration procedure to examine phospholipid-activity relationships. Abeywardena MY; Allen TM; Charnock JS Biochim Biophys Acta; 1983 Mar; 729(1):62-74. PubMed ID: 6131692 [TBL] [Abstract][Full Text] [Related]
28. Structure-function investigations of the membrane (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B: studies of reactive amino acid residues using group-specific reagents. Lewis RN; George R; McElhaney RN Arch Biochem Biophys; 1986 May; 247(1):201-10. PubMed ID: 2939801 [TBL] [Abstract][Full Text] [Related]
29. Correlation between bilayer lipid dynamics and activity of the diglucosyldiacylglycerol synthase from Acholeplasma laidlawii membranes. Karlsson OP; Rytömaa M; Dahlqvist A; Kinnunen PK; Wieslander A Biochemistry; 1996 Aug; 35(31):10094-102. PubMed ID: 8756472 [TBL] [Abstract][Full Text] [Related]
30. Cryptic adenosine triphosphatase activities in plasma membranes of CCl4-cirrhotic rats. Its modulation by changes in cholesterol/phospholipid ratios. Yahuaca P; Amaya A; Rojkind M; Mourelle M Lab Invest; 1985 Nov; 53(5):541-5. PubMed ID: 2997543 [TBL] [Abstract][Full Text] [Related]
31. [Accumulation of cholesterol in Acholeplasma laidlawii membranes in the steady-state phase of culture growth]. Kapitanov AB; Ladygina VG; Mukhankin AI; Ivanova VF; Klebanov GI Biokhimiia; 1983 Nov; 48(11):1921-6. PubMed ID: 6661465 [TBL] [Abstract][Full Text] [Related]
32. Purification and characterization of the membrane (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B. Lewis RN; McElhaney RN Biochim Biophys Acta; 1983 Oct; 735(1):113-22. PubMed ID: 6138096 [TBL] [Abstract][Full Text] [Related]
33. Effects of cholesterol on the orientational order of unsaturated lipids in the membranes of acholeplasma laidlawii. A 2H-NMR study. Rance M; Jeffrey KR; Tulloch AP; Butler KW; Smith IC Biochim Biophys Acta; 1982 May; 688(1):191-200. PubMed ID: 7093275 [TBL] [Abstract][Full Text] [Related]
34. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles. Chen CH; Zuklie BM; Roth LG Arch Biochem Biophys; 1998 Mar; 351(1):135-40. PubMed ID: 9500847 [TBL] [Abstract][Full Text] [Related]
35. Alterations in phospholipid-dependent (Na+ +K+)-ATPase activity due to lipid fluidity. Effects of cholesterol and Mg2+. Kimelberg HK Biochim Biophys Acta; 1975 Nov; 413(1):143-56. PubMed ID: 90 [TBL] [Abstract][Full Text] [Related]
36. A conformational model of the action of general anesthetics at the membrane level. III. Anesthetics and the properties of membrane-bound enzymes: mitochondrial ATPase. Lenaz G; Curatola G; Mazzanti L; Parenti-Castelli G; Landi L; Sechi AM Ital J Biochem; 1978; 27(6):431-49. PubMed ID: 158576 [TBL] [Abstract][Full Text] [Related]
37. Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. Cornelius F Biochemistry; 2001 Jul; 40(30):8842-51. PubMed ID: 11467945 [TBL] [Abstract][Full Text] [Related]
38. Heart sarcolemmal ATPase and calcium binding activities in rats fed a high cholesterol diet. Moffat MP; Dhalla NS Can J Cardiol; 1985; 1(3):194-200. PubMed ID: 2996727 [TBL] [Abstract][Full Text] [Related]
39. Magnesium mediated change in physical state of phospholipid modulates membrane ATPase activity. Yang FY; Huang YG; Zhang XF; Guo BQ Magnes Res; 1988 Jul; 1(1-2):13-21. PubMed ID: 2908561 [TBL] [Abstract][Full Text] [Related]
40. Phase transitions of Acholeplasma laidlawii membranes. The involvement of Mg(2+)-ATPase in the C transition. Chen JW; Hu LY; Hwang F FEBS Lett; 1993 May; 322(3):253-6. PubMed ID: 8486158 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]