These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 2959654)

  • 21. A cII-dependent promoter is located within the Q gene of bacteriophage lambda.
    Hoopes BC; McClure WR
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3134-8. PubMed ID: 3159014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lambda gpP-DnaB Helicase Sequestration and gpP-RpoB Associated Effects: On Screens for Auxotrophs, Selection for Rif(R), Toxicity, Mutagenicity, Plasmid Curing.
    Hayes S; Wang W; Rajamanickam K; Chu A; Banerjee A; Hayes C
    Viruses; 2016 Jun; 8(6):. PubMed ID: 27338450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription of a bacteriophage lambda DNA site blocks growth of Escherichia coli.
    Guzman P; Rivera Chavira BE; Court DL; Gottesman ME; Guarneros G
    J Bacteriol; 1990 Feb; 172(2):1030-4. PubMed ID: 2137118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Escherichia coli nusG function on lambda N-mediated transcription antitermination.
    Sullivan SL; Ward DF; Gottesman ME
    J Bacteriol; 1992 Feb; 174(4):1339-44. PubMed ID: 1531224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda cII protein.
    Banuett F; Hoyt MA; McFarlane L; Echols H; Herskowitz I
    J Mol Biol; 1986 Jan; 187(2):213-24. PubMed ID: 2939254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyadenylation of oop RNA in the regulation of bacteriophage lambda development.
    Wróbel B; Herman-Antosiewicz A; Szalewska-Pałasz S; Wegrzyn G
    Gene; 1998 May; 212(1):57-65. PubMed ID: 9661664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phage genetic sites involved in lambda growth inhibition by the Escherichia coli rap mutant.
    Guzmán P; Guarneros G
    Genetics; 1989 Mar; 121(3):401-9. PubMed ID: 2523838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence that ribosomal protein S10 itself is a cellular component necessary for transcription antitermination by phage lambda N protein.
    Das A; Ghosh B; Barik S; Wolska K
    Proc Natl Acad Sci U S A; 1985 Jun; 82(12):4070-4. PubMed ID: 2987961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro regulation of phage lambda cII gene expression by Escherichia coli integration host factor.
    Peacock S; Weissbach H; Nash HA
    Proc Natl Acad Sci U S A; 1984 Oct; 81(19):6009-13. PubMed ID: 6091131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of dnaJ null mutants of Escherichia coli.
    Sell SM; Eisen C; Ang D; Zylicz M; Georgopoulos C
    J Bacteriol; 1990 Sep; 172(9):4827-35. PubMed ID: 2144273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutational analysis of a regulatory region in bacteriophage lambda that has overlapping signals for the initiation of transcription and translation.
    Wulff DL; Mahoney M; Shatzman A; Rosenberg M
    Proc Natl Acad Sci U S A; 1984 Jan; 81(2):555-9. PubMed ID: 6229793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations in the ATP-binding domain of Escherichia coli rho factor affect transcription termination in vivo.
    Dombroski AJ; Platt T
    J Bacteriol; 1990 May; 172(5):2477-84. PubMed ID: 2139646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of the DNA binding domain of the phage lambda cII transcriptional activator and the direct correlation of cII protein stability with its oligomeric forms.
    Ho YS; Mahoney ME; Wulff DL; Rosenberg M
    Genes Dev; 1988 Feb; 2(2):184-95. PubMed ID: 2966093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic analysis of bacteriophage lambdaN-dependent antitermination suggests a possible role for the RNA polymerase alpha subunit in facilitating specific functions of NusA and NusE.
    Szalewska-Pałasz A; Strzelczyk B; Herman-Antosiewicz A; Wegrzyn G; Thomas MS
    Arch Microbiol; 2003 Sep; 180(3):161-8. PubMed ID: 12845423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations that affect the efficiency of translation of mRNA for the cII gene of coliphage lambda.
    Dul E; Mahoney ME; Wulff DL
    Genetics; 1987 Apr; 115(4):585-90. PubMed ID: 2953647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complementation of the lytD1 mutation of Escherichia coli by either the cI or cro gene of bacteriophage lambda.
    Dai DX; Ishiguro EE
    J Bacteriol; 1991 Jan; 173(2):893-5. PubMed ID: 1824770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Lambda Select cII Mutation Detection System.
    Besaratinia A; Tommasi S
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutations that alter the DNA binding site for the bacteriophage lambda cII protein and affect the translation efficiency of the cII gene.
    Place N; Fien K; Mahoney ME; Wulff DL; Ho YS; Debouck C; Rosenberg M; Shih MC; Gussin GN
    J Mol Biol; 1984 Dec; 180(4):865-80. PubMed ID: 6241264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Pleiotropic effect of the rpoC mutation in Escherichia coli K-12 reducing the frequency of lysogenization by phage lambda].
    Gol'denberg DS; Sineokiĭ SP
    Genetika; 1990 Jun; 26(6):1008-18. PubMed ID: 2146182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. nusA amber mutation that causes temperature-sensitive growth of Escherichia coli.
    Tsugawa A; Saito M; Court DL; Nakamura Y
    J Bacteriol; 1988 Feb; 170(2):908-15. PubMed ID: 2828334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.