These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2959656)
1. Reactive sulfhydryl groups of sarcoplasmic reticulum ATPase. III. Identification of cysteine residues whose modification with N-ethylmaleimide leads to loss of the Ca2+-transporting activity. Kawakita M; Yamashita T J Biochem; 1987 Jul; 102(1):103-9. PubMed ID: 2959656 [TBL] [Abstract][Full Text] [Related]
2. Reactive sulfhydryl groups of sarcoplasmic reticulum ATPase. I. Location of a group which is most reactive with N-ethylmaleimide. Saito-Nakatsuka K; Yamashita T; Kubota I; Kawakita M J Biochem; 1987 Feb; 101(2):365-76. PubMed ID: 2953711 [TBL] [Abstract][Full Text] [Related]
3. Selective modification of functionally distinct sulfhydryl groups of sarcoplasmic reticulum Ca2+,Mg2+-adenosine triphosphatase with N-ethylmaleimide. Kawakita M; Yasuoka K; Kaziro Y J Biochem; 1980 Feb; 87(2):609-17. PubMed ID: 6102087 [TBL] [Abstract][Full Text] [Related]
4. Studies on conformational transitions of Ca2+, Mg2+-adenosine triphosphatase of sarcoplasmic reticulum. I. Selective labeling of functionally distinct sulfhydryl groups with conformational probes and evidence for a Ca2+-dependent conformational change. Yasuoka-Yabe K; Kawakita M J Biochem; 1983 Sep; 94(3):665-75. PubMed ID: 6139370 [TBL] [Abstract][Full Text] [Related]
5. Formation of the ADP-insensitive phosphoenzyme intermediate in the sarcoplasmic reticulum Ca2+-ATPase of which both Cys344 and Cys364 are modified by N-ethylmaleimide. Suzuki H; Kanazawa T Biochemistry; 1999 Jan; 38(2):820-5. PubMed ID: 9888823 [TBL] [Abstract][Full Text] [Related]
6. Determination of the primary structure of intermolecular cross-linking sites on the Ca2(+)-ATPase of sarcoplasmic reticulum using 14C-labeled N,N'-(1,4-phenylene)bismaleimide or N-ethylmaleimide. Yamasaki K; Sano N; Ohe M; Yamamoto T J Biochem; 1990 Dec; 108(6):918-25. PubMed ID: 2150967 [TBL] [Abstract][Full Text] [Related]
7. Ca2(+)-dependent conformational change of the ATP-binding site of Ca2(+)-transporting ATPase of sarcoplasmic reticulum as revealed by an alteration of the target-site specificity of adenosine triphosphopyridoxal. Yamamoto H; Imamura Y; Tagaya M; Fukui T; Kawakita M J Biochem; 1989 Dec; 106(6):1121-5. PubMed ID: 2534125 [TBL] [Abstract][Full Text] [Related]
8. Modification of the (Ca2+ + Mg2+)-ATPase protein of sarcoplasmic reticulum with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Bailin G; Huang JR Biochim Biophys Acta; 1989 Apr; 995(2):122-32. PubMed ID: 2522798 [TBL] [Abstract][Full Text] [Related]
9. Reactive sulfhydryl groups of sarcoplasmic reticulum ATPase. II. Site of labeling with iodoacetamide and its fluorescent derivative. Yamashita T; Kawakita M J Biochem; 1987 Feb; 101(2):377-85. PubMed ID: 2953712 [TBL] [Abstract][Full Text] [Related]
10. Phosphoenzyme conformational states and nucleotide-binding site hydrophobicity following thiol modification of the Ca2+-ATPase of sarcoplasmic reticulum from skeletal muscle. Davidson GA; Berman MC J Biol Chem; 1987 May; 262(15):7041-6. PubMed ID: 2953714 [TBL] [Abstract][Full Text] [Related]
11. Preferential degradation of the KMnO4-oxidized or N-ethylmaleimide-modified form of sarcoplasmic reticulum ATPase by calpain from chick skeletal muscle. Chung SS; Kwak KB; Lee JS; Ha DB; Chung CH Biochim Biophys Acta; 1990 Nov; 1041(2):160-3. PubMed ID: 2148273 [TBL] [Abstract][Full Text] [Related]
12. Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase. Viner RI; Williams TD; Schöneich C Biochemistry; 1999 Sep; 38(38):12408-15. PubMed ID: 10493809 [TBL] [Abstract][Full Text] [Related]
13. Frequency-domain fluorescence spectroscopy resolves the location of maleimide-directed spectroscopic probes within the tertiary structure of the Ca-ATPase of sarcoplasmic reticulum. Bigelow DJ; Inesi G Biochemistry; 1991 Feb; 30(8):2113-25. PubMed ID: 1825607 [TBL] [Abstract][Full Text] [Related]
14. The NH2 terminus of the (Ca2+ + Mg2+)-adenosine triphosphatase is located on the cytoplasmic surface of the sarcoplasmic reticulum membrane. Reithmeier RA; MacLennan DH J Biol Chem; 1981 Jun; 256(12):5957-60. PubMed ID: 6113241 [TBL] [Abstract][Full Text] [Related]
15. Studies on conformational transitions of Ca2+,Mg2+-adenosine triphosphatase of sarcoplasmic reticulum. II. Conformational characteristics of stabilized reaction intermediates as revealed by fluorescent and paramagnetic probes. Yasuoka-Yabe K; Tsuji A; Kawakita M J Biochem; 1983 Sep; 94(3):677-88. PubMed ID: 6139371 [TBL] [Abstract][Full Text] [Related]
16. Uncoupling of ATP splitting from Ca(2+)-transport in Ca(2+)-transporting ATPase of the sarcoplasmic reticulum as a result of modification by N-(3-pyrene)maleimide: activation of a channel with a specificity for alkaline earth metal ions. Suzuki T; Kawakita M J Biochem; 1993 Aug; 114(2):203-9. PubMed ID: 8262900 [TBL] [Abstract][Full Text] [Related]
17. Chemical modification of an arginine residue in the ATP-binding site of Ca2+ -transporting ATPase of sarcoplasmic reticulum by phenylglyoxal. Yamamoto H; Kawakita M Mol Cell Biochem; 1999 Jan; 190(1-2):169-77. PubMed ID: 10098984 [TBL] [Abstract][Full Text] [Related]
18. Affinity labeling of the ATP-binding site of Ca2+-transporting ATPase of sarcoplasmic reticulum by adenosine triphosphopyridoxal: identification of the reactive lysyl residue. Yamamoto H; Tagaya M; Fukui T; Kawakita M J Biochem; 1988 Mar; 103(3):452-7. PubMed ID: 2968978 [TBL] [Abstract][Full Text] [Related]
19. Chemical modification and fluorescence labeling study of Ca2+,Mg2+-adenosine triphosphatase of sarcoplasmic reticulum using iodoacetamide and its N-substituted derivatives. Baba A; Nakamura T; Kawakita M J Biochem; 1986 Nov; 100(5):1137-47. PubMed ID: 2950079 [TBL] [Abstract][Full Text] [Related]
20. Chemical modification of the Ca(2+)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum: identification of sites labeled with aryl isothiocyanates and thiol-directed conformational probes. Wawrzynów A; Collins JH Biochim Biophys Acta; 1993 Nov; 1203(1):60-70. PubMed ID: 8218393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]