These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 2959667)

  • 21. Direction of sliding and relative sliding velocities within trypsinized sperm axonemes of Gallus domesticus.
    Woolley DM; Brammall A
    J Cell Sci; 1987 Oct; 88 ( Pt 3)():361-71. PubMed ID: 3448100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional reconstitution of inner dynein arms in Chlamydomonas flagellar axonemes.
    Smith EF; Sale WS
    J Cell Biol; 1992 May; 117(3):573-81. PubMed ID: 1533396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of dynein as the outer arms of sea urchin sperm axonemes.
    Ogawa K; Mohri T; Mohri H
    Proc Natl Acad Sci U S A; 1977 Nov; 74(11):5006-10. PubMed ID: 144918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes.
    Gagnon C; White D; Huitorel P; Cosson J
    Mol Biol Cell; 1994 Sep; 5(9):1051-63. PubMed ID: 7841521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of the central pair apparatus on microtubule sliding velocity in sea urchin sperm flagella.
    Yoshimura M; Shingyoji C
    Cell Struct Funct; 1999 Feb; 24(1):43-54. PubMed ID: 10355878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of antibodies against dynein and tubulin on the stiffness of flagellar axonemes.
    Okuno M; Asai DJ; Ogawa K; Brokaw CJ
    J Cell Biol; 1981 Dec; 91(3 Pt 1):689-94. PubMed ID: 6460037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beat frequency difference between the two flagella of Chlamydomonas depends on the attachment site of outer dynein arms on the outer-doublet microtubules.
    Takada S; Kamiya R
    Cell Motil Cytoskeleton; 1997; 36(1):68-75. PubMed ID: 8986378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulatory mechanisms of sperm flagellar motility by metachronal and synchronous sliding of doublet microtubules.
    Takei GL; Fujinoki M; Yoshida K; Ishijima S
    Mol Hum Reprod; 2017 Dec; 23(12):817-826. PubMed ID: 29040653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of imposed bending on microtubule sliding in sperm flagella.
    Morita Y; Shingyoji C
    Curr Biol; 2004 Dec; 14(23):2113-8. PubMed ID: 15589153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unidirectional movement of fluorescent microtubules on rows of dynein arms of disintegrated axonemes.
    Yamada A; Yamaga T; Sakakibara H; Nakayama H; Oiwa K
    J Cell Sci; 1998 Jan; 111 ( Pt 1)():93-8. PubMed ID: 9394015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorothioate analogs of ATP as the substrates of dynein and ciliary or flagellar movement.
    Shimizu T; Okuno M; Marchese-Ragona SP; Johnson KA
    Eur J Biochem; 1990 Aug; 191(3):543-50. PubMed ID: 2143985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of sea urchin sperm flagellar dynein ATPase activity by salt-extracted axonemes.
    Yokota E; Mabuchi I; Sato H
    J Biochem; 1987 Jul; 102(1):31-41. PubMed ID: 2959658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-frequency nanometre-scale vibration in 'quiescent' flagellar axonemes.
    Kamimura S; Kamiya R
    Nature; 1989 Aug; 340(6233):476-8. PubMed ID: 2526926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition by ATP and activation by ADP in the regulation of flagellar movement in sea urchin sperm.
    Yoshimura A; Nakano I; Shingyoji C
    Cell Motil Cytoskeleton; 2007 Oct; 64(10):777-93. PubMed ID: 17685440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microtubule sliding in flagellar axonemes of Chlamydomonas mutants missing inner- or outer-arm dynein: velocity measurements on new types of mutants by an improved method.
    Kurimoto E; Kamiya R
    Cell Motil Cytoskeleton; 1991; 19(4):275-81. PubMed ID: 1834352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-frequency vibration in flagellar axonemes with amplitudes reflecting the size of tubulin.
    Kamimura S; Kamiya R
    J Cell Biol; 1992 Mar; 116(6):1443-54. PubMed ID: 1531831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella.
    Wargo MJ; Smith EF
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):137-42. PubMed ID: 12518061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.
    Ishijima S
    PLoS One; 2016; 11(2):e0148880. PubMed ID: 26863204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring the regulation of dynein activity during flagellar motility.
    Shingyoji C
    Methods Enzymol; 2013; 524():147-69. PubMed ID: 23498739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural-functional relationships of the dynein, spokes, and central-pair projections predicted from an analysis of the forces acting within a flagellum.
    Lindemann CB
    Biophys J; 2003 Jun; 84(6):4115-26. PubMed ID: 12770914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.