These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29596852)

  • 21. Undamped Oscillations Generated by Hopf Bifurcations in Fractional-Order Recurrent Neural Networks With Caputo Derivative.
    Xiao M; Zheng WX; Jiang G; Cao J
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3201-14. PubMed ID: 25993707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reverse allostasis in biological systems: Minimal conditions and implications.
    Rezaei-Ghaleh N; Bakhtiari D; Rashidi A
    J Theor Biol; 2017 Aug; 426():134-139. PubMed ID: 28554610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oscillations for a delayed predator-prey model with Hassell-Varley-type functional response.
    Xu C; Li P
    C R Biol; 2015 Apr; 338(4):227-40. PubMed ID: 25836016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New approaches to modelling and analysis of biochemical reactions, pathways and networks.
    Crampin EJ; Schnell S
    Prog Biophys Mol Biol; 2004 Sep; 86(1):1-4. PubMed ID: 15261523
    [No Abstract]   [Full Text] [Related]  

  • 25. Interplay between random fluctuations and rate dependent phenomena at slow passage to limit-cycle oscillations in a bistable thermoacoustic system.
    Unni VR; Gopalakrishnan EA; Syamkumar KS; Sujith RI; Surovyatkina E; Kurths J
    Chaos; 2019 Mar; 29(3):031102. PubMed ID: 30927835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bifurcation of a delayed Gause predator-prey model with Michaelis-Menten type harvesting.
    Liu W; Jiang Y
    J Theor Biol; 2018 Feb; 438():116-132. PubMed ID: 29129548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear control of bioreactors with input multiplicities--an experimental work.
    Kumar SV; Kumar VR; Reddy GP
    Bioprocess Biosyst Eng; 2005 Nov; 28(1):45-53. PubMed ID: 16133471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bifurcation analysis of an age-structured alcoholism model.
    Guo ZK; Huo HF; Xiang H
    J Biol Dyn; 2018 Dec; 12(1):1009-1033. PubMed ID: 30384815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pitchfork and Hopf bifurcation thresholds in stochastic equations with delayed feedback.
    Gaudreault M; Lépine F; Viñals J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061920. PubMed ID: 20365203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Instability of disease-free equilibrium in a model of malaria with immune delay.
    Blyuss KB; Kyrychko YN
    Math Biosci; 2014 Feb; 248():54-6. PubMed ID: 24373861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of neural populations: stability and synchrony.
    Sirovich L; Omurtag A; Lubliner K
    Network; 2006 Mar; 17(1):3-29. PubMed ID: 16613792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability and sustained oscillations in a ventricular cardiomyocyte model.
    Amuzescu B; Georgescu A; Nistor G; Popescu M; Svab I; Flonta ML; Corlan AD
    Interdiscip Sci; 2012 Mar; 4(1):1-18. PubMed ID: 22392272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Interplay between Feedback and Buffering in Cellular Homeostasis.
    Hancock EJ; Ang J; Papachristodoulou A; Stan GB
    Cell Syst; 2017 Nov; 5(5):498-508.e23. PubMed ID: 29055671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of plateau bursting depending on the location of its equilibrium.
    Osinga HM; Tsaneva-Atanasova KT
    J Neuroendocrinol; 2010 Dec; 22(12):1301-14. PubMed ID: 20955345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems.
    Postlethwaite CM; Brown G; Silber M
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120467. PubMed ID: 23960225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Instability of the steady state solution in cell cycle population structure models with feedback.
    Bárány B; Moses G; Young T
    J Math Biol; 2019 Apr; 78(5):1365-1387. PubMed ID: 30523382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stability analysis of the elbow with a load.
    Giesl P; Meisel D; Scheurle J; Wagner H
    J Theor Biol; 2004 May; 228(1):115-25. PubMed ID: 15064087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal design of feedback control by inhibition: dynamic considerations.
    Savageau MA
    J Mol Evol; 1975 Aug; 5(3):199-222. PubMed ID: 1159800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Backward bifurcations, turning points and rich dynamics in simple disease models.
    Zhang W; Wahl LM; Yu P
    J Math Biol; 2016 Oct; 73(4):947-76. PubMed ID: 26921202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Periodic oscillations and backward bifurcation in a model for the dynamics of malaria transmission.
    Ngonghala CN; Ngwa GA; Teboh-Ewungkem MI
    Math Biosci; 2012 Nov; 240(1):45-62. PubMed ID: 22732318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.