These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29596977)

  • 1. Isoline use in crop composition studies with genetically modified crops under EFSA guidance - Short communication.
    Herman RA; Fast BJ; Mathesius C; Delaney B
    Regul Toxicol Pharmacol; 2018 Jun; 95():204-206. PubMed ID: 29596977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EFSA Genetically Engineered Crop Composition Equivalence Approach: Performance and Consistency.
    Herman RA; Huang E; Fast BJ; Walker C
    J Agric Food Chem; 2019 Apr; 67(14):4080-4088. PubMed ID: 30896940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equivalence tests for safety assessment of genetically modified crops using plant composition data.
    Engel J; van der Voet H
    Food Chem Toxicol; 2021 Oct; 156():112517. PubMed ID: 34411642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of genetically-modified crops: Part 1. Conditional difference testing with a given genetic background.
    Jiang C; Meng C; Schapaugh A
    PLoS One; 2019; 14(1):e0210747. PubMed ID: 30650144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the use of untargeted metabolomics in the safety assessment of genetically modified crops.
    Bedair M; Glenn KC
    Metabolomics; 2020 Oct; 16(10):111. PubMed ID: 33037482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative safety assessment of genetically modified crops: focus on equivalence with reference varieties could contribute to more efficient and effective field trials.
    Kleter GA; van der Voet H; Engel J; van der Berg JP
    Transgenic Res; 2023 Aug; 32(4):235-250. PubMed ID: 37213044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multivariate equivalence testing for food safety assessment.
    Leday GGR; Engel J; Vossen JH; de Vos RCH; van der Voet H
    Food Chem Toxicol; 2022 Dec; 170():113446. PubMed ID: 36191656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenesis affects endogenous soybean allergen levels less than traditional breeding.
    Hill RC; Fast BJ; Herman RA
    Regul Toxicol Pharmacol; 2017 Oct; 89():70-73. PubMed ID: 28720347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of the ToxRTool to Assess the Reliability of Toxicology Studies Conducted with Genetically Modified Crops and Implications for Future Safety Testing.
    Koch MS; DeSesso JM; Williams AL; Michalek S; Hammond B
    Crit Rev Food Sci Nutr; 2016; 56(3):512-26. PubMed ID: 25208336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based tolerance intervals derived from cumulative historical composition data: application for substantial equivalence assessment of a genetically modified crop.
    Hong B; Fisher TL; Sult TS; Maxwell CA; Mickelson JA; Kishino H; Locke ME
    J Agric Food Chem; 2014 Oct; 62(40):9916-26. PubMed ID: 25208038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unintended compositional changes in genetically modified (GM) crops: 20 years of research.
    Herman RA; Price WD
    J Agric Food Chem; 2013 Dec; 61(48):11695-701. PubMed ID: 23414177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety assessment of genetically modified plants with deliberately altered composition.
    Halford NG; Hudson E; Gimson A; Weightman R; Shewry PR; Tompkins S
    Plant Biotechnol J; 2014 Aug; 12(6):651-4. PubMed ID: 24735114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equivalence Testing Approaches in Genetically Modified Organism Risk Assessment.
    van der Voet H; Paoletti C
    J Agric Food Chem; 2019 Dec; 67(49):13506-13508. PubMed ID: 31725270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Legislation governing genetically modified and genome-edited crops in Europe: the need for change.
    Halford NG
    J Sci Food Agric; 2019 Jan; 99(1):8-12. PubMed ID: 29952140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety of GM crops: compositional analysis.
    Brune PD; Culler AH; Ridley WP; Walker K
    J Agric Food Chem; 2013 Sep; 61(35):8243-7. PubMed ID: 24266762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of whole food animal studies in the safety assessment of genetically modified crops: limitations and recommendations.
    Bartholomaeus A; Parrott W; Bondy G; Walker K;
    Crit Rev Toxicol; 2013 Nov; 43 Suppl 2(Suppl 2):1-24. PubMed ID: 24164514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clarification on "EFSA Genetically Engineered Crop Composition Equivalence Approach: Performance and Consistency".
    Herman RA; Storer NP; Walker C
    J Agric Food Chem; 2020 May; 68(21):5787-5789. PubMed ID: 32353233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bringing a transgenic crop to market: where compositional analysis fits.
    Privalle LS; Gillikin N; Wandelt C
    J Agric Food Chem; 2013 Sep; 61(35):8260-6. PubMed ID: 23534903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety Assessment of Food and Feed from GM Crops in Europe: Evaluating EFSA's Alternative Framework for the Rat 90-day Feeding Study.
    Hong B; Du Y; Mukerji P; Roper JM; Appenzeller LM
    J Agric Food Chem; 2017 Jul; 65(27):5545-5560. PubMed ID: 28573861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.