These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29597155)

  • 1. Dynamic wetting of human blood and plasma on various surfaces.
    Milionis A; Krishnan KG; Loth E; Lawrence M
    Colloids Surf B Biointerfaces; 2018 Jun; 166():218-223. PubMed ID: 29597155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
    Cheng L; Muller SJ; Radke CJ
    Curr Eye Res; 2004 Feb; 28(2):93-108. PubMed ID: 14972715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced switching of surfaces at wetting transitions through photoisomerization of polymer monolayers.
    Groten J; Bunte C; Rühe J
    Langmuir; 2012 Oct; 28(42):15038-46. PubMed ID: 22967018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.
    Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH
    J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of air and water vapor environments on the hydrophobicity of surfaces.
    Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP
    J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable wetting of polymer surfaces.
    Yilgor I; Bilgin S; Isik M; Yilgor E
    Langmuir; 2012 Oct; 28(41):14808-14. PubMed ID: 22989033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces.
    Raj R; Enright R; Zhu Y; Adera S; Wang EN
    Langmuir; 2012 Nov; 28(45):15777-88. PubMed ID: 23057739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of surface wettability through adsorption of partly fluorinated statistical and block polyelectrolytes from aqueous medium.
    Nurmi L; Kontturi K; Houbenov N; Laine J; Ruokolainen J; Seppälä J
    Langmuir; 2010 Oct; 26(19):15325-32. PubMed ID: 20825194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.
    Iqbal R; Majhy B; Sen AK
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31170-31180. PubMed ID: 28829562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.
    Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM
    J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring anisotropic wetting properties on submicrometer-scale periodic grooved surfaces.
    Xia D; He X; Jiang YB; Lopez GP; Brueck SR
    Langmuir; 2010 Feb; 26(4):2700-6. PubMed ID: 20085338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact angle hysteresis, adhesion, and marine biofouling.
    Schmidt DL; Brady RF; Lam K; Schmidt DC; Chaudhury MK
    Langmuir; 2004 Mar; 20(7):2830-6. PubMed ID: 15835160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
    Kumar M; Bhardwaj R
    Sci Rep; 2020 Jan; 10(1):935. PubMed ID: 31969578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wettability of graphene.
    Raj R; Maroo SC; Wang EN
    Nano Lett; 2013 Apr; 13(4):1509-15. PubMed ID: 23458704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roughness assessment and wetting behavior of fluorocarbon surfaces.
    Terriza A; Álvarez R; Borrás A; Cotrino J; Yubero F; González-Elipe AR
    J Colloid Interface Sci; 2012 Jun; 376(1):274-82. PubMed ID: 22483335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.