BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 29597176)

  • 1. Effect of disinfectant residual on the interaction between bacterial growth and assimilable organic carbon in a drinking water distribution system.
    Li W; Zhang J; Wang F; Qian L; Zhou Y; Qi W; Chen J
    Chemosphere; 2018 Jul; 202():586-597. PubMed ID: 29597176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the biological stability situation of a full scale water distribution system in south China by three biological stability evaluation methods.
    Zhang J; Li WY; Wang F; Qian L; Xu C; Liu Y; Qi W
    Chemosphere; 2016 Oct; 161():43-52. PubMed ID: 27421100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting bacterial growth in drinking water distribution system.
    Lu W; Zhang XJ
    Biomed Environ Sci; 2005 Apr; 18(2):137-40. PubMed ID: 16001834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regrowth potential of chlorine-resistant bacteria in drinking water under chloramination.
    Wu X; Nan J; Shen J; Kang J; Li D; Yan P; Wang W; Wang B; Zhao S; Chen Z
    J Hazard Mater; 2022 Apr; 428():128264. PubMed ID: 35051770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological stability in drinking water: a regression analysis of influencing factors.
    Lu W; Zhang XJ
    J Environ Sci (China); 2005; 17(3):395-8. PubMed ID: 16083110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems.
    Thayanukul P; Kurisu F; Kasuga I; Furumai H
    Water Res; 2013 Jan; 47(1):225-32. PubMed ID: 23134741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.
    Liu X; Wang J; Liu T; Kong W; He X; Jin Y; Zhang B
    PLoS One; 2015; 10(6):e0128825. PubMed ID: 26034988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of residual chlorine on the interaction between bacterial growth and assimilable organic carbon and biodegradable organic carbon in reclaimed water.
    Ren X; Chen H
    Sci Total Environ; 2021 Jan; 752():141223. PubMed ID: 32898796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of assimilable organic carbon (AOC) during drinking water disinfection: A microbiological prospect of disinfection byproducts.
    Huang G; Ng TW; Chen H; Chow AT; Liu S; Wong PK
    Environ Int; 2020 Feb; 135():105389. PubMed ID: 31838266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system.
    Liu W; Wu H; Wang Z; Ong SL; Hu JY; Ng WJ
    Water Res; 2002 Feb; 36(4):891-8. PubMed ID: 11848359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of an acceptable assimilable organic carbon (AOC) level for biological stability in water distribution systems with minimized chlorine residual.
    Ohkouchi Y; Ly BT; Ishikawa S; Kawano Y; Itoh S
    Environ Monit Assess; 2013 Feb; 185(2):1427-36. PubMed ID: 22527469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of phosphate-enhanced ozone/biofiltration on formation of disinfection byproducts and occurrence of opportunistic pathogens in drinking water distribution systems.
    Xing X; Wang H; Hu C; Liu L
    Water Res; 2018 Aug; 139():168-176. PubMed ID: 29635153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying the underlying causes of biological instability in a full-scale drinking water supply system.
    Nescerecka A; Juhna T; Hammes F
    Water Res; 2018 May; 135():11-21. PubMed ID: 29448079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-scale studies of factors related to coliform regrowth in drinking water.
    LeChevallier MW; Welch NJ; Smith DB
    Appl Environ Microbiol; 1996 Jul; 62(7):2201-11. PubMed ID: 8779557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing biological stability of disinfectant-free drinking water by reducing high molecular weight organic compounds with ultrafiltration posttreatment.
    Schurer R; Schippers JC; Kennedy MD; Cornelissen ER; Salinas-Rodriguez SG; Hijnen WAM; van der Wal A
    Water Res; 2019 Nov; 164():114927. PubMed ID: 31401326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Variations of biological stability and disinfection byproduct in water distribution systems and their correlations].
    Fang H; Lü XW; Lu JL; Zhu XC
    Huan Jing Ke Xue; 2007 Sep; 28(9):2030-4. PubMed ID: 17990552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water.
    Hijnen WAM; Schurer R; Bahlman JA; Ketelaars HAM; Italiaander R; van der Wal A; van der Wielen PWJJ
    Water Res; 2018 Feb; 129():240-251. PubMed ID: 29153877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.
    Prest EI; Weissbrodt DG; Hammes F; van Loosdrecht MC; Vrouwenvelder JS
    PLoS One; 2016; 11(10):e0164445. PubMed ID: 27792739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of enhanced assimilable organic carbon method across operational drinking water systems.
    Pick FC; Fish KE; Biggs CA; Moses JP; Moore G; Boxall JB
    PLoS One; 2019; 14(12):e0225477. PubMed ID: 31809502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of biological stability and corrosion potential in drinking water distribution systems: a case study.
    Chien CC; Kao CM; Chen CW; Dong CD; Chien HY
    Environ Monit Assess; 2009 Jun; 153(1-4):127-38. PubMed ID: 18483769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.