BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29597182)

  • 1. Potential electron donor for nanoiron supported hydrogenotrophic denitrification: H
    Xu C; Wang X; An Y; Yue J; Zhang R
    Chemosphere; 2018 Jul; 202():644-650. PubMed ID: 29597182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinhibitory effect of hydrogenotrophic bacteria on nitrate reduction by nanoscale zero-valent iron.
    An Y; Dong Q; Zhang K
    Chemosphere; 2014 May; 103():86-91. PubMed ID: 24331034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of passivated iron powder on final-product distribution in Fe-supported denitrification.
    An Y; Zhang K; Zhang L; Dong Q
    Water Sci Technol; 2013; 67(8):1664-70. PubMed ID: 23579818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling electron competition among nitrogen oxides reduction and N
    Liu Y; Ngo HH; Guo W; Peng L; Chen X; Wang D; Pan Y; Ni BJ
    Biotechnol Bioeng; 2018 Apr; 115(4):978-988. PubMed ID: 29240225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of sponge iron as an indirect electron donor to provide ferrous iron for nitrate-dependent ferrous oxidation processes: Denitrification performance and mechanism.
    Wang P; Li W; Ren S; Peng Y; Wang Y; Feng M; Guo K; Xie H; Li J
    Bioresour Technol; 2022 Aug; 357():127318. PubMed ID: 35609754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Performance and Fate of Electrons during Nitrate-Reducing Fe(II) Oxidation by the Autotrophic Enrichment Culture KS Grown at Different Initial Fe/N Ratios.
    Huang J; Mellage A; Garcia JP; Glöckler D; Mahler S; Elsner M; Jakus N; Mansor M; Jiang H; Kappler A
    Appl Environ Microbiol; 2023 Mar; 89(3):e0019623. PubMed ID: 36877057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp.
    Liu Y; Li S; Chen Z; Megharaj M; Naidu R
    Chemosphere; 2014 Aug; 108():426-32. PubMed ID: 24630453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nitrate concentration, pH, and hydraulic retention time on autotrophic denitrification efficiency with Fe(II) and Mn(II) as electron donors.
    Su JF; Shi JX; Huang TL; Ma F; Lu JS; Yang SF
    Water Sci Technol; 2016; 74(5):1185-92. PubMed ID: 27642838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.
    Liu T; Li X; Zhang W; Hu M; Li F
    J Colloid Interface Sci; 2014 Jun; 423():25-32. PubMed ID: 24703664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial reduction of nitrate in the presence of zero-valent iron.
    Zhang Y; Douglas GB; Kaksonen AH; Cui L; Ye Z
    Sci Total Environ; 2019 Jan; 646():1195-1203. PubMed ID: 30235605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of tourmaline on denitrification characteristics of hydrogenotrophic bacteria.
    Wang W; Jiang H; Zhu G; Song X; Liu X; Qiao Y
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4868-75. PubMed ID: 26545889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron as electron donor for denitrification: The efficiency, toxicity and mechanism.
    Wang R; Xu SY; Zhang M; Ghulam A; Dai CL; Zheng P
    Ecotoxicol Environ Saf; 2020 May; 194():110343. PubMed ID: 32151862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Anaerobic Reduction Process Characteristics and Microbial Community Analysis for Sulfate and Fe(Ⅱ) EDTA-NO/Fe(Ⅲ) EDTA].
    Zhang Y; Wan F; Zhou JT
    Huan Jing Ke Xue; 2017 Nov; 38(11):4706-4714. PubMed ID: 29965416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denitrification of nitrate in regeneration waste brine using hybrid cation exchanger supported nanoscale zero-valent iron with/without palladium nanoparticles.
    Patra S; Pranudta A; Chanlek N; Nguyen TT; Nhat NH; El-Moselhy MM; Padungthon S
    Chemosphere; 2023 Jan; 310():136851. PubMed ID: 36244425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of pH, EDTA/Fe(II) ratio, and microbial culture on Fe(II)-mediated autotrophic denitrification.
    Kiskira K; Papirio S; van Hullebusch ED; Esposito G
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21323-21333. PubMed ID: 28741211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron.
    Zhou J; Sun Q; Chen D; Wang H; Yang K
    Water Sci Technol; 2017 Oct; 76(7-8):1827-1832. PubMed ID: 28991797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autotrophic denitrification using Fe(II) as an electron donor: A novel prospective denitrification process.
    Wang Y; Ren S; Wang P; Wang B; Hu K; Li J; Wang Y; Li Z; Li S; Li W; Peng Y
    Sci Total Environ; 2023 Feb; 858(Pt 1):159721. PubMed ID: 36306837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Cd(II) immobilization in sediment with zero-valent iron induced by hydrogenotrophic denitrification.
    Chen Y; Li W; Bu H; Yin W; Li P; Fang Z; Wu J
    J Hazard Mater; 2023 Jan; 441():129833. PubMed ID: 36084458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable isotopes and iron oxide mineral products as markers of chemodenitrification.
    Jones LC; Peters B; Lezama Pacheco JS; Casciotti KL; Fendorf S
    Environ Sci Technol; 2015 Mar; 49(6):3444-52. PubMed ID: 25683572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity.
    Chen N; Geng M; Huang D; Tan M; Li Z; Liu G; Zhu C; Fang G; Zhou D
    J Hazard Mater; 2022 Jul; 434():128861. PubMed ID: 35405609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.