BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29597182)

  • 21. Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity.
    Chen N; Geng M; Huang D; Tan M; Li Z; Liu G; Zhu C; Fang G; Zhou D
    J Hazard Mater; 2022 Jul; 434():128861. PubMed ID: 35405609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of nitrate from water by acid-washed zero-valent iron/ferrous ion/hydrogen peroxide: influencing factors and reaction mechanism.
    Li Y; Fu F; Ding Z
    Water Sci Technol; 2018 Jan; 77(1-2):525-533. PubMed ID: 29377837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron.
    Shin KH; Cha DK
    Chemosphere; 2008 May; 72(2):257-62. PubMed ID: 18331753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Goethite Formed in the Periplasmic Space of
    Xing B; Graham NJD; Zhao B; Li X; Tang Y; Kappler A; Dong H; Winkler M; Yu W
    Environ Sci Technol; 2023 Aug; 57(30):11096-11107. PubMed ID: 37467428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology.
    Zhang M; Zheng P; Wang R; Li W; Lu H; Zhang J
    Chemosphere; 2014 Dec; 117():604-9. PubMed ID: 25461924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption and Incorporation of Arsenic to Biogenic Lepidocrocite Formed in the Presence of Ferrous Iron during Denitrification by Paracoccus denitrificans.
    Park S; Lee JH; Shin TJ; Hur HG; Kim MG
    Environ Sci Technol; 2018 Sep; 52(17):9983-9991. PubMed ID: 30111094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control.
    Wei Y; Dai J; Mackey HR; Chen GH
    Water Res; 2017 Oct; 122():226-233. PubMed ID: 28601790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of Hydrogen Electron Donor, Alkaline pH, and High Nitrate Concentrations on Microbial Denitrification: A Review.
    Albina P; Durban N; Bertron A; Albrecht A; Robinet JC; Erable B
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31635215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustaining reactivity of Fe(0) for nitrate reduction via electron transfer between dissolved Fe(2+) and surface iron oxides.
    Han L; yang L; Wang H; Hu X; Chen Z; Hu C
    J Hazard Mater; 2016 May; 308():208-15. PubMed ID: 26835898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mediated electron transfer between Fe(II) adsorbed onto hydrous ferric oxide and a working electrode.
    Klein AR; Silvester E; Hogan CF
    Environ Sci Technol; 2014 Sep; 48(18):10835-42. PubMed ID: 25157830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification.
    An Y; Li T; Jin Z; Dong M; Xia H; Wang X
    Bioresour Technol; 2010 Dec; 101(24):9825-8. PubMed ID: 20727742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron.
    Liu CC; Tseng DH; Wang CY
    J Hazard Mater; 2006 Aug; 136(3):706-13. PubMed ID: 16504392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions.
    Guo CH; Stabnikov V; Ivanov V
    Bioresour Technol; 2010 Jun; 101(11):3992-9. PubMed ID: 20138755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of pyrite for pH control during hydrogenotrophic denitrification using metallic iron as the ultimate electron donor.
    Jha D; Bose P
    Chemosphere; 2005 Nov; 61(7):1020-31. PubMed ID: 16257322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis.
    Iida H; Takayanagi K; Nakanishi T; Osaka T
    J Colloid Interface Sci; 2007 Oct; 314(1):274-80. PubMed ID: 17568605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial reduction of nitrate in the presence of zero-valent iron and biochar.
    Oh SY; Seo YD; Kim B; Kim IY; Cha DK
    Bioresour Technol; 2016 Jan; 200():891-6. PubMed ID: 26600458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing denitrification using a novel in situ membrane biofilm reactor (isMBfR).
    Wu Y; Li Y; Ontiveros-Valencia A; Ordaz-Díaz L; Liu J; Zhou C; Rittmann BE
    Water Res; 2017 Aug; 119():234-241. PubMed ID: 28463771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.
    Finck N; Dardenne K
    J Contam Hydrol; 2016 May; 188():44-51. PubMed ID: 27010738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles.
    Shi J; Ai Z; Zhang L
    Water Res; 2014 Aug; 59():145-53. PubMed ID: 24793112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of microbial communities removing nitrogen oxides from flue gas: the BioDeNOx process.
    Kumaraswamy R; van Dongen U; Kuenen JG; Abma W; van Loosdrecht MC; Muyzer G
    Appl Environ Microbiol; 2005 Oct; 71(10):6345-52. PubMed ID: 16204556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.