BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29597182)

  • 41. [Nitrate removal by a strain of nitrate-dependent Fe (II) -oxidizing bacteria].
    Wang HY; Yang K; Zhang Q; Ji B; Chen D; Sun YC; Tian J
    Huan Jing Ke Xue; 2014 Apr; 35(4):1437-42. PubMed ID: 24946599
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires.
    Mu Y; Wu H; Ai Z
    J Hazard Mater; 2015 Nov; 298():1-10. PubMed ID: 25988715
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of granular ferric hydroxide amendment on the reduction of nitrate in groundwater by zero-valent iron.
    Song H; Jeon BH; Chon CM; Kim Y; Nam IH; Schwartz FW; Cho DW
    Chemosphere; 2013 Nov; 93(11):2767-73. PubMed ID: 24125714
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of ferrous-ferric Fe3O4 nanoparticles in recombinant human ferritin cages.
    Walls MG; Cao C; Yu-Zhang K; Li J; Che R; Pan Y
    Microsc Microanal; 2013 Aug; 19(4):835-41. PubMed ID: 23800760
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nitrate mediated biotic zero valent iron corrosion for enhanced Cd(II) removal.
    Huang J; Yin W; Li P; Bu H; Lv S; Fang Z; Yan M; Wu J
    Sci Total Environ; 2020 Nov; 744():140715. PubMed ID: 32698046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: in situ X-ray scattering and spectroscopy studies.
    Wang W; Pleasants J; Bu W; Park RY; Kuzmenko I; Vaknin D
    J Colloid Interface Sci; 2012 Oct; 384(1):45-54. PubMed ID: 22818795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ferrous ion regulated extracellular electron transfer: towards self-suppressed microbial iron(III) oxide reduction.
    Yao Y; Huang X
    Chem Commun (Camb); 2016 Feb; 52(16):3324-7. PubMed ID: 26822011
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface.
    Luo J; Song G; Liu J; Qian G; Xu ZP
    J Colloid Interface Sci; 2014 Dec; 435():21-5. PubMed ID: 25217726
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI).
    Rodriguez S; Vasquez L; Costa D; Romero A; Santos A
    Chemosphere; 2014 Apr; 101():86-92. PubMed ID: 24439838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: the role of different size-fractions of dissolved organic matter.
    Zhu Z; Tao L; Li F
    J Hazard Mater; 2014 Aug; 279():436-43. PubMed ID: 25093552
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH.
    Korać J; Stanković DM; Stanić M; Bajuk-Bogdanović D; Žižić M; Pristov JB; Grgurić-Šipka S; Popović-Bijelić A; Spasojević I
    Sci Rep; 2018 Feb; 8(1):3530. PubMed ID: 29476145
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of iron-based nanoparticles on microbial denitrification by Paracoccus sp. strain YF1.
    Jiang C; Liu Y; Chen Z; Megharaj M; Naidu R
    Aquat Toxicol; 2013 Oct; 142-143():329-35. PubMed ID: 24090609
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Denitrification by Pseudomonas stutzeri coupled with CO2 reduction by Sporomusa ovata with hydrogen as an electron donor assisted by solid-phase humin.
    Xiao Z; Awata T; Zhang D; Katayama A
    J Biosci Bioeng; 2016 Sep; 122(3):307-13. PubMed ID: 26975755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism.
    Yoon IH; Bang S; Kim KW; Kim MG; Park SY; Choi WK
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1081-90. PubMed ID: 25943509
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generation, utilization, and transformation of cathode electrons for bioreduction of Fe(III)EDTA in a biofilm electrode reactor related to NOx removal from flue gas.
    Li W; Xia Y; Zhao J; Liu N; Li S; Zhang S
    Environ Sci Technol; 2015 Apr; 49(7):4530-5. PubMed ID: 25799265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stability of continuously produced Fe(II)/Fe(III)/As(V) co-precipitates under periodic exposure to reducing agents.
    Doerfelt C; Feldmann T; Daenzer R; Demopoulos GP
    Chemosphere; 2015 Nov; 138():239-46. PubMed ID: 26086809
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accessibility and selective stabilization of the principal spin states of iron by pyridyl versus phenolic ketimines: modulation of the 6A1 ↔ 2T2 ground-state transformation of the [FeN4O2]+ chromophore.
    Shongwe MS; Al-Zaabi UA; Al-Mjeni F; Eribal CS; Sinn E; Al-Omari IA; Hamdeh HH; Matoga D; Adams H; Morris MJ; Rheingold AL; Bill E; Sellmyer DJ
    Inorg Chem; 2012 Aug; 51(15):8241-53. PubMed ID: 22808945
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Abiotic pyrite formation produces a large Fe isotope fractionation.
    Guilbaud R; Butler IB; Ellam RM
    Science; 2011 Jun; 332(6037):1548-51. PubMed ID: 21700871
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interference of Nitrite with Pyrite under Acidic Conditions: Implications for Studies of Chemolithotrophic Denitrification.
    Yan R; Kappler A; Peiffer S
    Environ Sci Technol; 2015 Oct; 49(19):11403-10. PubMed ID: 26335043
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: the role of Fe(II) and Fe(III).
    Yan S; Chen Y; Xiang W; Bao Z; Liu C; Deng B
    Chemosphere; 2014 Dec; 117():625-30. PubMed ID: 25461927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.