These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29597183)

  • 21. "Connecting worlds - a view on microfluidics for a wider application".
    Fernandes AC; Gernaey KV; Krühne U
    Biotechnol Adv; 2018; 36(4):1341-1366. PubMed ID: 29733891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping.
    Unthan S; Radek A; Wiechert W; Oldiges M; Noack S
    Microb Cell Fact; 2015 Mar; 14():32. PubMed ID: 25888907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Open and continuous fermentation: products, conditions and bioprocess economy.
    Li T; Chen XB; Chen JC; Wu Q; Chen GQ
    Biotechnol J; 2014 Dec; 9(12):1503-11. PubMed ID: 25476917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of well and groove microchannel bioreactors for cell culture.
    Korin N; Bransky A; Khoury M; Dinnar U; Levenberg S
    Biotechnol Bioeng; 2009 Mar; 102(4):1222-30. PubMed ID: 18973280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes.
    Probst C; Grünberger A; Wiechert W; Kohlheyer D
    J Microbiol Methods; 2013 Dec; 95(3):470-6. PubMed ID: 24041615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic tools for quantitative studies of eukaryotic chemotaxis.
    Beta C; Bodenschatz E
    Eur J Cell Biol; 2011 Oct; 90(10):811-6. PubMed ID: 21783273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2.
    Rittmann S; Seifert A; Herwig C
    Crit Rev Biotechnol; 2015 Jun; 35(2):141-51. PubMed ID: 24020504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses.
    Kosa G; Shapaval V; Kohler A; Zimmermann B
    Microb Cell Fact; 2017 Nov; 16(1):195. PubMed ID: 29132358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures.
    Amanullah A; Otero JM; Mikola M; Hsu A; Zhang J; Aunins J; Schreyer HB; Hope JA; Russo AP
    Biotechnol Bioeng; 2010 May; 106(1):57-67. PubMed ID: 20073088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of mannosylglycerate in Saccharomyces cerevisiae by metabolic engineering and bioprocess optimization.
    Faria C; Borges N; Rocha I; Santos H
    Microb Cell Fact; 2018 Nov; 17(1):178. PubMed ID: 30445960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How scalable and suitable are single-use bioreactors?
    Junne S; Neubauer P
    Curr Opin Biotechnol; 2018 Oct; 53():240-247. PubMed ID: 29753977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated reagent-dispensing system for microfluidic cell biology assays.
    Ly J; Masterman-Smith M; Ramakrishnan R; Sun J; Kokubun B; van Dam RM
    J Lab Autom; 2013 Dec; 18(6):530-41. PubMed ID: 24051515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calorimetric bioprocess monitoring by small modifications to a standard bench-scale bioreactor.
    Schubert T; Breuer U; Harms H; Maskow T
    J Biotechnol; 2007 May; 130(1):24-31. PubMed ID: 17397956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration and application of optical chemical sensors in microbioreactors.
    Gruber P; Marques MPC; Szita N; Mayr T
    Lab Chip; 2017 Aug; 17(16):2693-2712. PubMed ID: 28725897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel probes for pH and dissolved oxygen measurements in cultivations from millilitre to benchtop scale.
    Demuth C; Varonier J; Jossen V; Eibl R; Eibl D
    Appl Microbiol Biotechnol; 2016 May; 100(9):3853-63. PubMed ID: 26995606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
    Grünberger A; Paczia N; Probst C; Schendzielorz G; Eggeling L; Noack S; Wiechert W; Kohlheyer D
    Lab Chip; 2012 May; 12(11):2060-8. PubMed ID: 22511122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charting microbial phenotypes in multiplex nanoliter batch bioreactors.
    Dai J; Yoon SH; Sim HY; Yang YS; Oh TK; Kim JF; Hong JW
    Anal Chem; 2013 Jun; 85(12):5892-9. PubMed ID: 23581968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics.
    Sart S; Agathos SN
    Mol Biotechnol; 2018 Nov; 60(11):843-861. PubMed ID: 30196389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical sensor systems for bioprocess monitoring.
    Ulber R; Frerichs JG; Beutel S
    Anal Bioanal Chem; 2003 Jun; 376(3):342-8. PubMed ID: 12728296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic single-cell analysis in biotechnology: from monitoring towards understanding.
    Dusny C; Grünberger A
    Curr Opin Biotechnol; 2020 Jun; 63():26-33. PubMed ID: 31809975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.