These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29597310)

  • 1. Optimization and Characterization of Preceramic Inks for Direct Ink Writing of Ceramic Matrix Composite Structures.
    Franchin G; Maden HS; Wahl L; Baliello A; Pasetto M; Colombo P
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29597310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Fumed Silica on Thixotropic Behavior and Processing Window by UV-Assisted Direct Ink Writing.
    Jiang F; Zhou M; Drummer D
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological Behavior and Printability Study of Tri-Calcium Phosphate Ceramic Inks for Direct Ink Writing Method.
    Paul D L B; Praveen AS; Čepová L; Elangovan M
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of properties and cost efficiency of zirconia processed by DIW printing, casting and CAD/CAM-milling.
    Teegen IS; Schadte P; Wille S; Adelung R; Siebert L; Kern M
    Dent Mater; 2023 Jul; 39(7):669-676. PubMed ID: 37230861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.
    Raj R; Dixit AR
    3D Print Addit Manuf; 2023 Aug; 10(4):828-854. PubMed ID: 37609584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing.
    Legett SA; Torres X; Schmalzer AM; Pacheco A; Stockdale JR; Talley S; Robison T; Labouriau A
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chocolate-based Ink Three-dimensional Printing (Ci3DP).
    Karyappa R; Hashimoto M
    Sci Rep; 2019 Oct; 9(1):14178. PubMed ID: 31578354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV-Curing Assisted Direct Ink Writing of Dense, Crack-Free, and High-Performance Zirconia-Based Composites With Aligned Alumina Platelets.
    Li M; Huang S; Willems E; Soete J; Inokoshi M; Van Meerbeek B; Vleugels J; Zhang F
    Adv Mater; 2024 Feb; 36(5):e2306764. PubMed ID: 37986661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing.
    Teoh XY; Zhang B; Belton P; Chan SY; Qi S
    Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of nanocomposite biomaterials improved by extrusion during direct ink writing.
    Mondal D; Willett TL
    J Mech Behav Biomed Mater; 2020 Apr; 104():103653. PubMed ID: 32174411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
    Yuk H; Zhao X
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological and Biological Impact of Printable PCL-Fibers as Reinforcing Fillers in Cell-Laden Spider-Silk Bio-Inks.
    Schaefer N; Andrade Mier MS; Sonnleitner D; Murenu N; Ng XJ; Lamberger Z; Buechner M; Trossmann VT; Schubert DW; Scheibel T; Lang G
    Small Methods; 2023 Oct; 7(10):e2201717. PubMed ID: 37349897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties.
    Jiang Z; Erol O; Chatterjee D; Xu W; Hibino N; Romer LH; Kang SH; Gracias DH
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28289-28295. PubMed ID: 31291075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preceramic Paper-Derived SiC
    Li K; Kashkarov E; Syrtanov M; Sedanova E; Ivashutenko A; Lider A; Fan P; Yuan D; Travitzky N
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32013159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced Additive Manufacturing of Structurally-Colored Architectures.
    Kim JB; Lee HY; Chae C; Lee SY; Kim SH
    Adv Mater; 2024 Mar; 36(9):e2307917. PubMed ID: 37909823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness.
    Weng S; Kuang X; Zhang Q; Hamel CM; Roach DJ; Hu N; Jerry Qi H
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12797-12804. PubMed ID: 33355461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.