These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 2959795)
1. Dissociation of NS5 from cell fractions containing West Nile virus-specific polymerase activity. Grun JB; Brinton MA J Virol; 1987 Nov; 61(11):3641-4. PubMed ID: 2959795 [TBL] [Abstract][Full Text] [Related]
2. Nucleocytoplasmic shuttling of the West Nile virus RNA-dependent RNA polymerase NS5 is critical to infection. Lopez-Denman AJ; Russo A; Wagstaff KM; White PA; Jans DA; Mackenzie JM Cell Microbiol; 2018 Aug; 20(8):e12848. PubMed ID: 29582535 [TBL] [Abstract][Full Text] [Related]
3. An interaction between the methyltransferase and RNA dependent RNA polymerase domains of the West Nile virus NS5 protein. Tan CSE; Hobson-Peters JM; Stoermer MJ; Fairlie DP; Khromykh AA; Hall RA J Gen Virol; 2013 Sep; 94(Pt 9):1961-1971. PubMed ID: 23740481 [TBL] [Abstract][Full Text] [Related]
4. Characterization of West Nile virus RNA-dependent RNA polymerase and cellular terminal adenylyl and uridylyl transferases in cell-free extracts. Grun JB; Brinton MA J Virol; 1986 Dec; 60(3):1113-24. PubMed ID: 3023663 [TBL] [Abstract][Full Text] [Related]
5. Expression of vector-based small interfering RNA against West Nile virus effectively inhibits virus replication. Ong SP; Choo BG; Chu JJ; Ng ML Antiviral Res; 2006 Dec; 72(3):216-23. PubMed ID: 16870272 [TBL] [Abstract][Full Text] [Related]
6. The molecular biology of West Nile Virus: a new invader of the western hemisphere. Brinton MA Annu Rev Microbiol; 2002; 56():371-402. PubMed ID: 12142476 [TBL] [Abstract][Full Text] [Related]
7. Separation of functional West Nile virus replication complexes from intracellular membrane fragments. Grun JB; Brinton MA J Gen Virol; 1988 Dec; 69 ( Pt 12)():3121-7. PubMed ID: 3199103 [TBL] [Abstract][Full Text] [Related]
8. West Nile virus strain Kunjin NS5 polymerase is a phosphoprotein localized at the cytoplasmic site of viral RNA synthesis. Mackenzie JM; Kenney MT; Westaway EG J Gen Virol; 2007 Apr; 88(Pt 4):1163-1168. PubMed ID: 17374759 [TBL] [Abstract][Full Text] [Related]
9. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein. Dong H; Zhang B; Shi PY Virology; 2008 Nov; 381(1):123-35. PubMed ID: 18799181 [TBL] [Abstract][Full Text] [Related]
10. Vector derived artificial miRNA mediated inhibition of West Nile virus replication and protein expression. Karothia D; Kumar Dash P; Parida M; Bhagyawant SS; Kumar JS Gene; 2020 Mar; 729():144300. PubMed ID: 31884102 [TBL] [Abstract][Full Text] [Related]
11. Primary structure of the West Nile flavivirus genome region coding for all nonstructural proteins. Castle E; Leidner U; Nowak T; Wengler G; Wengler G Virology; 1986 Feb; 149(1):10-26. PubMed ID: 3753811 [TBL] [Abstract][Full Text] [Related]
12. RNA elements within the 5' untranslated region of the West Nile virus genome are critical for RNA synthesis and virus replication. Li XF; Jiang T; Yu XD; Deng YQ; Zhao H; Zhu QY; Qin ED; Qin CF J Gen Virol; 2010 May; 91(Pt 5):1218-23. PubMed ID: 20016034 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of West Nile virus Replication by Bifunctional siRNA Targeting the NS2A and NS5 Conserved Region. Karothia D; Dash PK; Parida M; Bhagyawant S; Kumar JS Curr Gene Ther; 2018; 18(3):180-190. PubMed ID: 29874999 [TBL] [Abstract][Full Text] [Related]
14. Monoclonal antibodies to the West Nile virus NS5 protein map to linear and conformational epitopes in the methyltransferase and polymerase domains. Hall RA; Tan SE; Selisko B; Slade R; Hobson-Peters J; Canard B; Hughes M; Leung JY; Balmori-Melian E; Hall-Mendelin S; Pham KB; Clark DC; Prow NA; Khromykh AA J Gen Virol; 2009 Dec; 90(Pt 12):2912-2922. PubMed ID: 19710254 [TBL] [Abstract][Full Text] [Related]
15. Mutations in West Nile virus nonstructural proteins that facilitate replicon persistence in vitro attenuate virus replication in vitro and in vivo. Rossi SL; Fayzulin R; Dewsbury N; Bourne N; Mason PW Virology; 2007 Jul; 364(1):184-95. PubMed ID: 17382364 [TBL] [Abstract][Full Text] [Related]
16. Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain. Park GS; Morris KL; Hallett RG; Bloom ME; Best SM J Virol; 2007 Jul; 81(13):6936-46. PubMed ID: 17459929 [TBL] [Abstract][Full Text] [Related]
17. Characterization of virus-specific vesicles assembled by West Nile virus non-structural proteins. Yu L; Takeda K; Gao Y Virology; 2017 Jun; 506():130-140. PubMed ID: 28388487 [TBL] [Abstract][Full Text] [Related]
18. Metal ion-binding studies highlight important differences between flaviviral RNA polymerases. Bougie I; Bisaillon M Biochim Biophys Acta; 2009 Jan; 1794(1):50-60. PubMed ID: 18930844 [TBL] [Abstract][Full Text] [Related]
19. Nuclear localisation of West Nile virus NS5 protein modulates host gene expression. López-Denman AJ; Tuipulotu DE; Ross JB; Trenerry AM; White PA; Mackenzie JM Virology; 2021 Jul; 559():131-144. PubMed ID: 33866234 [TBL] [Abstract][Full Text] [Related]
20. Generation and characterization of a rat monoclonal antibody against the RNA polymerase protein from Dengue Virus-2. García-Cordero J; Carrillo-Halfon S; León-Juárez M; Romero-Ramírez H; Valenzuela-León P; López-González M; Santos-Argumedo L; Gutiérrez-Castañeda B; González-Y-Merchand JA; Cedillo-Barrón L Immunol Invest; 2014; 43(1):28-40. PubMed ID: 24063571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]