These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2959844)

  • 1. Determination of volumetric flow in capillary tubes using an optical Doppler velocimeter.
    Davis MJ
    Microvasc Res; 1987 Sep; 34(2):223-30. PubMed ID: 2959844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of red cell flow microvessels: consequences of the Baker-Wayland spatial averaging model.
    Pittman RN; Ellsworth ML
    Microvasc Res; 1986 Nov; 32(3):371-88. PubMed ID: 3796308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo measurement of red cell velocity with epi- and transillumination.
    Harper SL; Bohlen HG
    Microvasc Res; 1983 Mar; 25(2):186-93. PubMed ID: 6843372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo and in vitro measurements of red cell velocity under epifluorescence microscopy.
    Seki J; Lipowsky HH
    Microvasc Res; 1989 Jul; 38(1):110-24. PubMed ID: 2761430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple construction of dual-slit red cell velocimeter.
    Itoh T; Yaegashi K; Kosaka T; Fukushima H; Morimoto T
    Jpn J Physiol; 1995; 45(4):681-6. PubMed ID: 7474545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates.
    Cokelet GR; Goldsmith HL
    Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography.
    Moger J; Matcher SJ; Winlove CP; Shore A
    J Biomed Opt; 2004; 9(5):982-94. PubMed ID: 15447020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-optic laser-Doppler anemometer microscope developed for the measurement of microvascular red cell velocity.
    Seki J
    Microvasc Res; 1990 Nov; 40(3):302-16. PubMed ID: 2150686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative rheology of nucleated and non-nucleated red blood cells. II. Rheological properties of avian red cells suspensions in narrow capillaries.
    Gaehtgens P; Will G; Schmidt F
    Pflugers Arch; 1981 Jun; 390(3):283-7. PubMed ID: 7196029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes.
    Gaehtgens P; Dührssen C; Albrecht KH
    Blood Cells; 1980; 6(4):799-817. PubMed ID: 7470632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation of red blood cell flow in small tubes by white blood cells.
    Thompson TN; La Celle PL; Cokelet GR
    Pflugers Arch; 1989 Feb; 413(4):372-7. PubMed ID: 2928089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood velocity and volumetric flow rate in human retinal vessels.
    Riva CE; Grunwald JE; Sinclair SH; Petrig BL
    Invest Ophthalmol Vis Sci; 1985 Aug; 26(8):1124-32. PubMed ID: 4019103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient rheological behavior of blood in low-shear tube flow: velocity profiles and effective viscosity.
    Alonso C; Pries AR; Kiesslich O; Lerche D; Gaehtgens P
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H25-32. PubMed ID: 7840268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of digital cross-correlation for on-line determination of single-vessel blood flow in the mammalian kidney.
    Zimmerhackl B; Tinsman J; Jamison RL; Robertson CR
    Microvasc Res; 1985 Jul; 30(1):63-74. PubMed ID: 4021838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of heart rate on centerline velocities of pulsatile intracardiac jets: an in vitro study with laser Doppler anemometry and pulsed Doppler ultrasound.
    Cagniot A; Cape EG; Walker PG; Yoganathan AP; Levine RA
    J Am Soc Echocardiogr; 1992; 5(4):393-404. PubMed ID: 1387317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary pore rheology of erythrocytes. V. The glass capillary array--effect of velocity and haematocrit in long bore tubes.
    Lingard PS
    Microvasc Res; 1979 May; 17(3 Pt 1):272-89. PubMed ID: 459940
    [No Abstract]   [Full Text] [Related]  

  • 17. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation.
    Reinke W; Gaehtgens P; Johnson PC
    Am J Physiol; 1987 Sep; 253(3 Pt 2):H540-7. PubMed ID: 3631291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of blood flow velocimeter for ocular vessels.
    Levy Y; Romano A
    Metab Pediatr Syst Ophthalmol (1985); 1988; 11(1-2):70-5. PubMed ID: 2978422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of wall surface on the flow of blood through endothelial-lined glass tubes.
    Fenton BM; Cokelet GR; la Celle PL
    Int J Microcirc Clin Exp; 1982; 1(2):157-62. PubMed ID: 7188505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow of red blood cell suspensions through narrow tubes.
    Gupta BB; Seshadri V
    Biorheology; 1977; 14(2-3):133-43. PubMed ID: 912038
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.