These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2959887)

  • 1. Quinolinate mimics neurotoxic actions of N-methyl-D-aspartate in rat cerebellar slices.
    Garthwaite G; Garthwaite J
    Neurosci Lett; 1987 Aug; 79(1-2):35-9. PubMed ID: 2959887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+-dependent depolarization and burst firing of rat CA1 pyramidal neurones induced by N-methyl-D-aspartic acid and quinolinic acid: antagonism by 2-amino-5-phosphonovaleric and kynurenic acids.
    Peet MJ; Curry K; Magnuson DS; McLennan H
    Can J Physiol Pharmacol; 1986 Feb; 64(2):163-8. PubMed ID: 2870788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptor-linked ionic channels mediate N-methyl-D-aspartate neurotoxicity in rat cerebellar slices.
    Garthwaite G; Garthwaite J
    Neurosci Lett; 1987 Dec; 83(3):241-6. PubMed ID: 2450312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the effects of N-methyl-D-aspartate and quinolinate on central neurones of the rat.
    McLennan H
    Neurosci Lett; 1984 May; 46(2):157-60. PubMed ID: 6146117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neurotoxic actions of quinolinic acid in the central nervous system.
    el-Defrawy SR; Boegman RJ; Jhamandas K; Beninger RJ
    Can J Physiol Pharmacol; 1986 Mar; 64(3):369-75. PubMed ID: 2939936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quinolinate potentiates the neurotoxicity of excitatory amino acids in hypoxic neuronal tissue in vitro.
    Schurr A; Rigor BM
    Brain Res; 1993 Jul; 617(1):76-80. PubMed ID: 8397046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological protection against the toxicity of N-methyl-D-aspartate in immature rat cerebellar slices.
    Lehmann A
    Neuropharmacology; 1987 Dec; 26(12):1751-61. PubMed ID: 3325847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus.
    Ganong AH; Cotman CW
    J Pharmacol Exp Ther; 1986 Jan; 236(1):293-9. PubMed ID: 2867215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quinolinate differentiates between forebrain and cerebellar NMDA receptors.
    Monaghan DT; Beaton JA
    Eur J Pharmacol; 1991 Feb; 194(1):123-5. PubMed ID: 1676371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultured striatal neurons containing NADPH-diaphorase or acetylcholinesterase are selectively resistant to injury by NMDA receptor agonists.
    Koh JY; Choi DW
    Brain Res; 1988 Apr; 446(2):374-8. PubMed ID: 2836034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid neurotoxicity: relationship to neuronal depolarization in rat cerebellar slices.
    Garthwaite J; Garthwaite G; Hajós F
    Neuroscience; 1986 Jun; 18(2):449-60. PubMed ID: 3526175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective loss of Purkinje and granule cell responsiveness to N-methyl-D-aspartate in rat cerebellum during development.
    Garthwaite G; Yamini B; Garthwaite J
    Brain Res; 1987 Dec; 433(2):288-92. PubMed ID: 3319048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinolinic acid effects on amino acid release from the rat cerebral cortex in vitro and in vivo.
    Connick JH; Stone TW
    Br J Pharmacol; 1988 Apr; 93(4):868-76. PubMed ID: 2898959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinolinic acid stimulates luteinizing hormone secretion through a serotonin-dependent mechanism.
    Johnson MD; Carroll BL; Whetsell WO; Crowley WR
    Exp Brain Res; 1985; 59(1):62-7. PubMed ID: 2990985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential action of NMDA antagonists on cholinergic neurotoxicity produced by N-methyl-D-aspartate and quinolinic acid.
    Pawley AC; Flesher S; Boegman RJ; Beninger RJ; Jhamandas KH
    Br J Pharmacol; 1996 Mar; 117(6):1059-64. PubMed ID: 8882597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The action of quinolinate in the rat spinal cord in vitro.
    Magnuson DS; Peet MJ; Curry K; McLennan H
    Can J Physiol Pharmacol; 1987 Dec; 65(12):2483-7. PubMed ID: 2966665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic effect of quinolinate on frog spinal, but not rat cortical, neurones: N-methyl-D-aspartate-like depolarisation and a novel type of hyperpolarisation.
    Martin D; Lodge D
    Neurosci Lett; 1987 Mar; 75(2):175-80. PubMed ID: 2883613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcutaneously applied magnesium protects reliably against quinolinate-induced N-methyl-D-aspartate (NMDA)-mediated neurodegeneration and convulsions in rats: are there therapeutical implications.
    Wolf G; Keilhoff G; Fischer S; Hass P
    Neurosci Lett; 1990 Sep; 117(1-2):207-11. PubMed ID: 2149747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of excitotoxic lesions of the basal forebrain by kainate, quinolinate, ibotenate, N-methyl-D-aspartate or quisqualate, and the effects on toxicity of 2-amino-5-phosphonovaleric acid and kynurenic acid in the rat.
    Winn P; Stone TW; Latimer M; Hastings MH; Clark AJ
    Br J Pharmacol; 1991 Apr; 102(4):904-8. PubMed ID: 1677299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinolinate and kainate neurotoxicity in neostriatal cultures is potentiated by co-culturing with neocortical neurons.
    Galarraga E; Surmeier DJ; Kitai ST
    Brain Res; 1990 Apr; 512(2):269-76. PubMed ID: 1972342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.