These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29599215)

  • 1. Comment on "Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins".
    Horner A; Pohl P
    Science; 2018 Mar; 359(6383):. PubMed ID: 29599215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response to Comment on "Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins".
    Tunuguntla RH; Zhang Y; Henley RY; Yao YC; Pham TA; Wanunu M; Noy A
    Science; 2018 Mar; 359(6383):. PubMed ID: 29599214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins.
    Tunuguntla RH; Henley RY; Yao YC; Pham TA; Wanunu M; Noy A
    Science; 2017 Aug; 357(6353):792-796. PubMed ID: 28839070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel.
    Zuo G; Shen R; Ma S; Guo W
    ACS Nano; 2010 Jan; 4(1):205-10. PubMed ID: 20000381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanotube Porins in Amphiphilic Block Copolymers as Fully Synthetic Mimics of Biological Membranes.
    Sanborn JR; Chen X; Yao YC; Hammons JA; Tunuguntla RH; Zhang Y; Newcomb CC; Soltis JA; De Yoreo JJ; Van Buuren A; Parikh AN; Noy A
    Adv Mater; 2018 Dec; 30(51):e1803355. PubMed ID: 30368926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong Differential Monovalent Anion Selectivity in Narrow Diameter Carbon Nanotube Porins.
    Li Z; Li Y; Yao YC; Aydin F; Zhan C; Chen Y; Elimelech M; Pham TA; Noy A
    ACS Nano; 2020 May; 14(5):6269-6275. PubMed ID: 32347708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic gating of ion transport in carbon nanotube porins: A modeling study.
    Yao YC; Li Z; Gillen AJ; Yosinski S; Reed MA; Noy A
    J Chem Phys; 2021 May; 154(20):204704. PubMed ID: 34241182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-tunable ion selectivity in carbon nanotube pores.
    Fornasiero F; In JB; Kim S; Park HG; Wang Y; Grigoropoulos CP; Noy A; Bakajin O
    Langmuir; 2010 Sep; 26(18):14848-53. PubMed ID: 20715879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmotically-driven transport in carbon nanotube porins.
    Kim K; Geng J; Tunuguntla R; Comolli LR; Grigoropoulos CP; Ajo-Franklin CM; Noy A
    Nano Lett; 2014 Dec; 14(12):7051-6. PubMed ID: 25372973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-ion permselectivity of narrow-diameter carbon nanotubes.
    Li Y; Li Z; Aydin F; Quan J; Chen X; Yao YC; Zhan C; Chen Y; Pham TA; Noy A
    Sci Adv; 2020 Sep; 6(38):. PubMed ID: 32938679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic tuning of permeation and selectivity in aquaporin water channels.
    Jensen MØ; Tajkhorshid E; Schulten K
    Biophys J; 2003 Nov; 85(5):2884-99. PubMed ID: 14581193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of carbon nanotube porins in lipid bilayers.
    Vögele M; Köfinger J; Hummer G
    Faraday Discuss; 2018 Sep; 209(0):341-358. PubMed ID: 29974904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural determinants of the hydrogen peroxide permeability of aquaporins.
    Almasalmeh A; Krenc D; Wu B; Beitz E
    FEBS J; 2014 Feb; 281(3):647-56. PubMed ID: 24286224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast water permeation through nanochannels with a densely fluorous interior surface.
    Itoh Y; Chen S; Hirahara R; Konda T; Aoki T; Ueda T; Shimada I; Cannon JJ; Shao C; Shiomi J; Tabata KV; Noji H; Sato K; Aida T
    Science; 2022 May; 376(6594):738-743. PubMed ID: 35549437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes.
    Majumder M; Chopra N; Andrews R; Hinds BJ
    Nature; 2005 Nov; 438(7064):44. PubMed ID: 16267546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discerning the mechanism of the multiwalled carbon nanotubes effect on root cell water and nutrient transport.
    Martinez-Ballesta MC; Chelbi N; Lopez-Zaplana A; Carvajal M
    Plant Physiol Biochem; 2020 Jan; 146():23-30. PubMed ID: 31722266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations.
    Hashido M; Kidera A; Ikeguchi M
    Biophys J; 2007 Jul; 93(2):373-85. PubMed ID: 17449664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore.
    Chowdhury R; Ren T; Shankla M; Decker K; Grisewood M; Prabhakar J; Baker C; Golbeck JH; Aksimentiev A; Kumar M; Maranas CD
    Nat Commun; 2018 Sep; 9(1):3661. PubMed ID: 30202038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of stability and transport of molecules through cyclic peptide nanotube and aquaporin: a molecular dynamics simulation approach.
    Maroli N; Kolandaivel P
    J Biomol Struct Dyn; 2020 Jan; 38(1):186-199. PubMed ID: 30678549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of PEG additives and pore rim functionalization on water transport through sub-1 nm carbon nanotube porins.
    Tunuguntla RH; Hu AY; Zhang Y; Noy A
    Faraday Discuss; 2018 Sep; 209(0):359-369. PubMed ID: 29987303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.