These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29599522)

  • 61. Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens.
    Pak K; Bartha R
    Appl Environ Microbiol; 1998 Jun; 64(6):1987-90. PubMed ID: 9603804
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microbial communities mediating net methylmercury formation along a trophic gradient in a peatland chronosequence.
    Wang B; Hu H; Bishop K; Buck M; Björn E; Skyllberg U; Nilsson MB; Bertilsson S; Bravo AG
    J Hazard Mater; 2023 Jan; 442():130057. PubMed ID: 36179622
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mercury methylation-related microbes and genes in the sediments of the Pearl River Estuary and the South China Sea.
    Yuan K; Chen X; Chen P; Huang Y; Jiang J; Luan T; Chen B; Wang X
    Ecotoxicol Environ Saf; 2019 Dec; 185():109722. PubMed ID: 31577991
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Transmembrane transport of inorganic mercury in microorganisms--a review].
    Du H; Igarashi Y; Wang D
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1109-15. PubMed ID: 25803887
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment: Changes in Hg Mobility or Microbial Methylators?
    Li Y; Zhao J; Zhong H; Wang Y; Li H; Li YF; Liem-Nguyen V; Jiang T; Zhang Z; Gao Y; Chai Z
    Environ Sci Technol; 2019 Feb; 53(4):1844-1852. PubMed ID: 30636405
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Role of Sulfate-Reducing Bacteria in Mercury Methylation in Soil of the Water-Level-Fluctuating Zone of the Three Gorges Reservoir Area].
    Chen R; Chen H; Wang DY; Xiang YP; Shen H
    Huan Jing Ke Xue; 2016 Oct; 37(10):3774-3780. PubMed ID: 29964408
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil.
    Beckers F; Awad YM; Beiyuan J; Abrigata J; Mothes S; Tsang DCW; Ok YS; Rinklebe J
    Environ Int; 2019 Jun; 127():276-290. PubMed ID: 30951944
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments?
    Drott A; Lambertsson L; Björn E; Skyllberg U
    Environ Sci Technol; 2008 Jan; 42(1):153-8. PubMed ID: 18350890
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inhibitory effects of Skeletonema costatum on mercury methylation by Geobacter sulfurreducens PCA.
    Ding LY; He NN; Yang S; Zhang LJ; Liang P; Wu SC; Wong MH; Tao HC
    Chemosphere; 2019 Feb; 216():179-185. PubMed ID: 30368082
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation.
    Luo HW; Yin X; Jubb AM; Chen H; Lu X; Zhang W; Lin H; Yu HQ; Liang L; Sheng GP; Gu B
    Environ Pollut; 2017 Jan; 220(Pt B):1359-1365. PubMed ID: 27836473
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Metabolically diverse microorganisms mediate methylmercury formation under nitrate-reducing conditions in a dynamic hydroelectric reservoir.
    Peterson BD; Poulin BA; Krabbenhoft DP; Tate MT; Baldwin AK; Naymik J; Gastelecutto N; McMahon KD
    ISME J; 2023 Oct; 17(10):1705-1718. PubMed ID: 37495676
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biogeochemical transformation of mercury driven by microbes involved in anaerobic digestion of municipal wastewater.
    Gao Y; Cheng H; Xiong B; Du H; Liu L; Imanaka T; Igarashi Y; Ma M; Wang D; Luo F
    J Environ Manage; 2023 Oct; 344():118640. PubMed ID: 37478720
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mercury methylation in rice paddy and accumulation in rice plant: A review.
    Zhao L; Meng B; Feng X
    Ecotoxicol Environ Saf; 2020 Jun; 195():110462. PubMed ID: 32179234
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Microbial mercury transformations: Molecules, functions and organisms.
    Yu RQ; Barkay T
    Adv Appl Microbiol; 2022; 118():31-90. PubMed ID: 35461663
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Increased water inputs fuel microbial mercury methylation in upland soils.
    Zhou XQ; Qu XM; Yang Z; Zhao J; Hao YY; Feng J; Huang Q; Liu YR
    J Hazard Mater; 2022 Oct; 439():129578. PubMed ID: 35853337
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Methylmercury cycling in High Arctic wetland ponds: controls on sedimentary production.
    Lehnherr I; St Louis VL; Kirk JL
    Environ Sci Technol; 2012 Oct; 46(19):10523-31. PubMed ID: 22799567
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments.
    Drott A; Lambertsson L; Björn E; Skyllberg U
    Environ Sci Technol; 2007 Apr; 41(7):2270-6. PubMed ID: 17438774
    [TBL] [Abstract][Full Text] [Related]  

  • 78.
    Tada Y; Marumoto K; Takeuchi A
    Microbiol Spectr; 2021 Oct; 9(2):e0083321. PubMed ID: 34494859
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Impacts of the invasive Spartina anglica on C-S-Hg cycles and Hg(II) methylating microbial communities revealed by hgcA gene analysis in intertidal sediment of the Han River estuary, Yellow Sea.
    Park J; Cho H; Han S; An SU; Choi A; Lee H; Hyun JH
    Mar Pollut Bull; 2023 Feb; 187():114498. PubMed ID: 36603235
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of oxygen, nitrate and aluminum addition on methylmercury efflux from mine-impacted reservoir sediment.
    Duvil R; Beutel MW; Fuhrmann B; Seelos M
    Water Res; 2018 Nov; 144():740-751. PubMed ID: 30125853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.