These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 29599897)

  • 1. Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease.
    Boukhenouna S; Wilson MA; Bahmed K; Kosmider B
    Oxid Med Cell Longev; 2018; 2018():5730395. PubMed ID: 29599897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress and free radicals in COPD--implications and relevance for treatment.
    Domej W; Oettl K; Renner W
    Int J Chron Obstruct Pulmon Dis; 2014; 9():1207-24. PubMed ID: 25378921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Update in chronic obstructive pulmonary disease: role of antioxidant and metabolizing gene polymorphisms.
    Lakhdar R; Denden S; Kassab A; Leban N; Knani J; Lefranc G; Miled A; Chibani JB; Khelil AH
    Exp Lung Res; 2011 Aug; 37(6):364-75. PubMed ID: 21721950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease.
    Jiang Y; Wang X; Hu D
    Int J Chron Obstruct Pulmon Dis; 2017; 12():1153-1162. PubMed ID: 28458526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease.
    Taniguchi A; Tsuge M; Miyahara N; Tsukahara H
    Antioxidants (Basel); 2021 Sep; 10(10):. PubMed ID: 34679673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach.
    Kelsen SG; Duan X; Ji R; Perez O; Liu C; Merali S
    Am J Respir Cell Mol Biol; 2008 May; 38(5):541-50. PubMed ID: 18079489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic obstructive pulmonary disease and oxidative stress.
    Domej W; Földes-Papp Z; Flögel E; Haditsch B
    Curr Pharm Biotechnol; 2006 Apr; 7(2):117-23. PubMed ID: 16724946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aryl hydrocarbon receptor suppresses cigarette-smoke-induced oxidative stress in association with dioxin response element (DRE)-independent regulation of sulfiredoxin 1.
    Sarill M; Zago M; Sheridan JA; Nair P; Matthews J; Gomez A; Roussel L; Rousseau S; Hamid Q; Eidelman DH; Baglole CJ
    Free Radic Biol Med; 2015 Dec; 89():342-57. PubMed ID: 26408075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic Potential of Small Molecules Targeting Oxidative Stress in the Treatment of Chronic Obstructive Pulmonary Disease (COPD): A Comprehensive Review.
    Dailah HG
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MKK3 influences mitophagy and is involved in cigarette smoke-induced inflammation.
    Mannam P; Rauniyar N; Lam TT; Luo R; Lee PJ; Srivastava A
    Free Radic Biol Med; 2016 Dec; 101():102-115. PubMed ID: 27717867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive correlation between PPARgamma/PGC-1alpha and gamma-GCS in lungs of rats and patients with chronic obstructive pulmonary disease.
    Li J; Dai A; Hu R; Zhu L; Tan S
    Acta Biochim Biophys Sin (Shanghai); 2010 Sep; 42(9):603-14. PubMed ID: 20732852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Mitochondria and Oxidative/Antioxidative Imbalance in Pathobiology of Chronic Obstructive Pulmonary Disease.
    Białas AJ; Sitarek P; Miłkowska-Dymanowska J; Piotrowski WJ; Górski P
    Oxid Med Cell Longev; 2016; 2016():7808576. PubMed ID: 28105251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive Oxygen Species in COPD-Related Vascular Remodeling.
    Zuo L; Chuang CC; Clark AD; Garrison DE; Kuhlman JL; Sypert DC
    Adv Exp Med Biol; 2017; 967():399-411. PubMed ID: 29047102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focus on antioxidant enzymes and antioxidant strategies in smoking related airway diseases.
    Kinnula VL
    Thorax; 2005 Aug; 60(8):693-700. PubMed ID: 16061713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction.
    Barreiro E; Peinado VI; Galdiz JB; Ferrer E; Marin-Corral J; Sánchez F; Gea J; Barberà JA;
    Am J Respir Crit Care Med; 2010 Aug; 182(4):477-88. PubMed ID: 20413628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel aspects of pathogenesis and regeneration mechanisms in COPD.
    Bagdonas E; Raudoniute J; Bruzauskaite I; Aldonyte R
    Int J Chron Obstruct Pulmon Dis; 2015; 10():995-1013. PubMed ID: 26082624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic capacity, oxidant stress, and chronic obstructive pulmonary disease--a new take on an old hypothesis.
    Stevenson CS; Koch LG; Britton SL
    Pharmacol Ther; 2006 Apr; 110(1):71-82. PubMed ID: 16343638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant responses to oxidant-mediated lung diseases.
    Comhair SA; Erzurum SC
    Am J Physiol Lung Cell Mol Physiol; 2002 Aug; 283(2):L246-55. PubMed ID: 12114185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epithelial Mitochondrial Dysfunction in Lung Disease.
    Zhang L; Wang W; Zhu B; Wang X
    Adv Exp Med Biol; 2017; 1038():201-217. PubMed ID: 29178078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress.
    Puente-Maestu L; Tejedor A; Lázaro A; de Miguel J; Alvarez-Sala L; González-Aragoneses F; Simón C; Agustí A
    Am J Respir Cell Mol Biol; 2012 Sep; 47(3):358-62. PubMed ID: 22493009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.