These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29599940)

  • 1. A New Intelligent Medical Decision Support System Based on Enhanced Hierarchical Clustering and Random Decision Forest for the Classification of Alcoholic Liver Damage, Primary Hepatoma, Liver Cirrhosis, and Cholelithiasis.
    Singh A; Pandey B
    J Healthc Eng; 2018; 2018():1469043. PubMed ID: 29599940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intelligent model for liver disease diagnosis.
    Lin RH
    Artif Intell Med; 2009 Sep; 47(1):53-62. PubMed ID: 19540738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of different types of liver diseases using rule based classification model.
    Kumar Y; Sahoo G
    Technol Health Care; 2013; 21(5):417-32. PubMed ID: 23963359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A decision tree--based method for the differential diagnosis of Aortic Stenosis from Mitral Regurgitation using heart sounds.
    Pavlopoulos SA; Stasis AC; Loukis EN
    Biomed Eng Online; 2004 Jun; 3(1):21. PubMed ID: 15225347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnosis of urinary tract infection based on artificial intelligence methods.
    Ozkan IA; Koklu M; Sert IU
    Comput Methods Programs Biomed; 2018 Nov; 166():51-59. PubMed ID: 30415718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing an AI knowledge-base for asymptomatic liver diseases.
    Babic A; Mathiesen U; Hedin K; Bodemar G; Wigertz O
    Proc AMIA Symp; 1998; ():513-7. PubMed ID: 9929272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Case-based reasoning support for liver disease diagnosis.
    Chuang CL
    Artif Intell Med; 2011 Sep; 53(1):15-23. PubMed ID: 21757326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting factors for survival of breast cancer patients using machine learning techniques.
    Ganggayah MD; Taib NA; Har YC; Lio P; Dhillon SK
    BMC Med Inform Decis Mak; 2019 Mar; 19(1):48. PubMed ID: 30902088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM.
    Peker M
    J Med Syst; 2016 May; 40(5):116. PubMed ID: 27000777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using T3, an improved decision tree classifier, for mining stroke-related medical data.
    Tjortjis C; Saraee M; Theodoulidis B; Keane JA
    Methods Inf Med; 2007; 46(5):523-9. PubMed ID: 17938773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of chronic hepatitis B, liver cirrhosis and hepatocellular carcinoma by SELDI-based serum decision tree classification.
    Cui J; Kang X; Dai Z; Huang C; Zhou H; Guo K; Li Y; Zhang Y; Sun R; Chen J; Li Y; Tang Z; Uemura T; Liu Y
    J Cancer Res Clin Oncol; 2007 Nov; 133(11):825-34. PubMed ID: 17516088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On optimal settings of classification tree ensembles for medical decision support.
    Budnik M; Krawczyk B
    Health Informatics J; 2013 Mar; 19(1):3-15. PubMed ID: 23486822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IntelliHealth: A medical decision support application using a novel weighted multi-layer classifier ensemble framework.
    Bashir S; Qamar U; Khan FH
    J Biomed Inform; 2016 Feb; 59():185-200. PubMed ID: 26703093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The art of building decision trees.
    Babic SH; Kokol P; Podgorelec V; Zorman M; Sprogar M; Stiglic MM
    J Med Syst; 2000 Feb; 24(1):43-52. PubMed ID: 10782443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.
    Lajnef T; Chaibi S; Ruby P; Aguera PE; Eichenlaub JB; Samet M; Kachouri A; Jerbi K
    J Neurosci Methods; 2015 Jul; 250():94-105. PubMed ID: 25629798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks.
    Cruz-Ramírez M; Hervás-Martínez C; Fernández JC; Briceño J; de la Mata M
    Artif Intell Med; 2013 May; 58(1):37-49. PubMed ID: 23489761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Nucleotide Polymorphism relevance learning with Random Forests for Type 2 diabetes risk prediction.
    López B; Torrent-Fontbona F; Viñas R; Fernández-Real JM
    Artif Intell Med; 2018 Apr; 85():43-49. PubMed ID: 28943335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient classification and outcome prediction in IgA nephropathy.
    Diciolla M; Binetti G; Di Noia T; Pesce F; Schena FP; Vågane AM; Bjørneklett R; Suzuki H; Tomino Y; Naso D
    Comput Biol Med; 2015 Nov; 66():278-86. PubMed ID: 26453758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary strategy to develop learning-based decision systems. Application to breast cancer and liver fibrosis stadialization.
    Gorunescu F; Belciug S
    J Biomed Inform; 2014 Jun; 49():112-8. PubMed ID: 24518558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ontology-driven clinical decision support system (IDDAP) for infectious disease diagnosis and antibiotic prescription.
    Shen Y; Yuan K; Chen D; Colloc J; Yang M; Li Y; Lei K
    Artif Intell Med; 2018 Mar; 86():20-32. PubMed ID: 29433958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.