BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 29600314)

  • 1. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean.
    Wu Y; Gong W; Wang Y; Yong T; Yang F; Liu W; Wu X; Du J; Shu K; Liu J; Liu C; Yang W
    J Plant Res; 2018 Jul; 131(4):671-680. PubMed ID: 29600314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.
    Jiang CD; Wang X; Gao HY; Shi L; Chow WS
    Plant Physiol; 2011 Mar; 155(3):1416-24. PubMed ID: 21245193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic regulation of photosynthetic function in field-grown sorghum.
    Li T; Liu Y; Shi L; Jiang C
    Plant Physiol Biochem; 2015 Sep; 94():86-94. PubMed ID: 26057699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf gas exchange and carbohydrates in tropical trees differing in successional status in two light environments in central Amazonia.
    Marenco RA; de C Gonçalves JF; Vieira G
    Tree Physiol; 2001 Dec; 21(18):1311-8. PubMed ID: 11731341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.
    Locke AM; Sack L; Bernacchi CJ; Ort DR
    Ann Bot; 2013 Sep; 112(5):911-8. PubMed ID: 23864003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpaxP. deltoides).
    Miyazawa S; Livingston NJ; Turpin DH
    J Exp Bot; 2006; 57(2):373-80. PubMed ID: 16172139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shade Inhibits Leaf Size by Controlling Cell Proliferation and Enlargement in Soybean.
    Wu Y; Gong W; Yang W
    Sci Rep; 2017 Aug; 7(1):9259. PubMed ID: 28835715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Photosynthetic characteristics and photoprotective mechanisms during leaf development of soybean plants grown in the field].
    Jiang CD; Gao HY; Zou Q; Jiang GM
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Aug; 30(4):428-34. PubMed ID: 15627692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-mediated constraints on leaf function correlate with leaf structure among deciduous and evergreen tree species.
    Green DS; Kruger EL
    Tree Physiol; 2001 Dec; 21(18):1341-6. PubMed ID: 11731345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves.
    Jifon JL; Syvertsen JP
    Tree Physiol; 2003 Feb; 23(2):119-27. PubMed ID: 12533306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons.
    Mediavilla S; Escudero A; Heilmeier H
    Tree Physiol; 2001 Mar; 21(4):251-9. PubMed ID: 11276419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.
    Mielke MS; Schaffer B
    Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fruit load and canopy shading affect leaf characteristics and net gas exchange of 'Spring' navel orange trees.
    Syvertsen JP; Goñi C; Otero A
    Tree Physiol; 2003 Sep; 23(13):899-906. PubMed ID: 14532013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.
    Sack L; Scoffoni C; John GP; Poorter H; Mason CM; Mendez-Alonzo R; Donovan LA
    J Exp Bot; 2013 Oct; 64(13):4053-80. PubMed ID: 24123455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Photosynthetic characteristics and active ingredients differences of Asarum heterotropoides var. mandshuricum under different light irradiance].
    Fang K; Ma HQ; Wang ZX; Sun CH; Zhang SN; Zhang YY; Tian YX; Wang ZQ
    Zhongguo Zhong Yao Za Zhi; 2019 Jul; 44(13):2753-2761. PubMed ID: 31359687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration.
    Frak E; Le Roux X; Millard P; Adam B; Dreyer E; Escuit C; Sinoquet H; Vandame M; Varlet-Grancher C
    J Exp Bot; 2002 Nov; 53(378):2207-16. PubMed ID: 12379788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of photosynthesis and stomatal conductance in the shrubland species manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides) for the estimation of annual canopy carbon uptake.
    Whitehead D; Walcroft AS; Scott NA; Townsend JA; Trotter CM; Rogers GN
    Tree Physiol; 2004 Jul; 24(7):795-804. PubMed ID: 15123451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of seismic stress on photosynthetic productivity, gas exchange, and leaf diffusive resistance of Glycine max (L.) Merrill cv Wells II.
    Pappas T; Mitchell CA
    Plant Physiol; 1985; 79(1):285-9. PubMed ID: 11540834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological, structural and physiological differences in heteromorphic leaves of Euphrates poplar during development stages and at crown scales.
    Zhai JT; Li YL; Han ZJ; Li ZJ
    Plant Biol (Stuttg); 2020 May; 22(3):366-375. PubMed ID: 31793152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis.
    Fan Y; Chen J; Wang Z; Tan T; Li S; Li J; Wang B; Zhang J; Cheng Y; Wu X; Yang W; Yang F
    BMC Plant Biol; 2019 Jan; 19(1):34. PubMed ID: 30665369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.