These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 29600381)
1. Spectral fitting approach for the determination of enrichment and contamination factors in mining sediments using laser-induced breakdown spectroscopy. Austria ES; Nuesca GM; Lamorena RB Environ Sci Pollut Res Int; 2018 Jun; 25(17):16620-16628. PubMed ID: 29600381 [TBL] [Abstract][Full Text] [Related]
2. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS). Dell'Aglio M; Gaudiuso R; Senesi GS; De Giacomo A; Zaccone C; Miano TM; De Pascale O J Environ Monit; 2011 May; 13(5):1422-6. PubMed ID: 21416069 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593 [TBL] [Abstract][Full Text] [Related]
4. A matrix effect and accuracy evaluation for the determination of elements in milk powder LIBS and laser ablation/ICP-OES spectrometry. Gilon N; El-Haddad J; Stankova A; Lei W; Ma Q; Motto-Ros V; Yu J Anal Bioanal Chem; 2011 Nov; 401(9):2681-9. PubMed ID: 21573840 [TBL] [Abstract][Full Text] [Related]
5. Direct determination of Ca, K, Mg, Na, P, S, Fe and Zn in bivalve mollusks by wavelength dispersive X-ray fluorescence (WDXRF) and laser-induced breakdown spectroscopy (LIBS). Costa VC; Amorim FAC; de Babos DV; Pereira-Filho ER Food Chem; 2019 Feb; 273():91-98. PubMed ID: 30292381 [TBL] [Abstract][Full Text] [Related]
6. Determination of heavy metals in cancerous and healthy colon tissues using laser induced breakdown spectroscopy and its cross-validation with ICP-AES method. Gondal MA; Aldakheel RK; Almessiere MA; Nasr MM; Almusairii JA; Gondal B J Pharm Biomed Anal; 2020 May; 183():113153. PubMed ID: 32058289 [TBL] [Abstract][Full Text] [Related]
7. Detection of micro-toxic elements in commercial coffee brands using optimized dual-pulsed laser-induced spectral analysis spectrometry. Khalil AAI; Labib OA Appl Opt; 2018 Aug; 57(23):6729-6741. PubMed ID: 30129619 [TBL] [Abstract][Full Text] [Related]
8. Spectral diagnosis of health hazardous toxins in face foundation powders using laser induced breakdown spectroscopy and inductively coupled plasma-optical emission spectroscopy (ICP-OES). Rehan I; Gondal MA; Rehan K; Sultana S Talanta; 2020 Sep; 217():121007. PubMed ID: 32498889 [TBL] [Abstract][Full Text] [Related]
9. Biomonitoring of essential and toxic metals in single hair using on-line solution-based calibration in laser ablation inductively coupled plasma mass spectrometry. Dressler VL; Pozebon D; Mesko MF; Matusch A; Kumtabtim U; Wu B; Sabine Becker J Talanta; 2010 Oct; 82(5):1770-7. PubMed ID: 20875575 [TBL] [Abstract][Full Text] [Related]
10. Determination of lead in soil at a historical mining and smelting site using laser-induced breakdown spectroscopy. Kwak J; Kim KW; Park M; Kim J; Park K Environ Technol; 2012 Sep; 33(16-18):2177-84. PubMed ID: 23240213 [TBL] [Abstract][Full Text] [Related]
11. Detection of nutritional and toxic elements in Pakistani pepper powders using laser induced breakdown spectroscopy. Rehan I; Rehan K; Khan MZ; Sultana S; Muhammad R; Khan HU Anal Methods; 2020 May; 12(20):2590-2598. PubMed ID: 32930285 [TBL] [Abstract][Full Text] [Related]
12. Detection and quantification of a toxic salt substitute (LiCl) by using laser induced breakdown spectroscopy (LIBS). Sezer B; Velioglu HM; Bilge G; Berkkan A; Ozdinc N; Tamer U; Boyaci IH Meat Sci; 2018 Jan; 135():123-128. PubMed ID: 28968555 [TBL] [Abstract][Full Text] [Related]
13. Rapid Determination and Quantification of Nutritional and Poisonous Metals in Vastly Consumed Ayurvedic Herbal Medicine (Rejuvenator Shilajit) by Humans Using Three Advanced Analytical Techniques. Aldakheel RK; Gondal MA; Alsayed HN; Almessiere MA; Nasr MM; Shemsi AM Biol Trace Elem Res; 2022 Sep; 200(9):4199-4216. PubMed ID: 34800280 [TBL] [Abstract][Full Text] [Related]
14. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy. Singh VK; Singh V; Rai AK; Thakur SN; Rai PK; Singh JP Appl Opt; 2008 Nov; 47(31):G38-47. PubMed ID: 19122701 [TBL] [Abstract][Full Text] [Related]
15. Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds. Singh J; Kumar R; Awasthi S; Singh V; Rai AK Food Chem; 2017 Apr; 221():1778-1783. PubMed ID: 27979160 [TBL] [Abstract][Full Text] [Related]
17. Fraction distribution and risk assessment of heavy metals in waste clay sediment discharged through the phosphate beneficiation process in Jordan. Al-Hwaiti MS; Brumsack HJ; Schnetger B Environ Monit Assess; 2015 Jul; 187(7):401. PubMed ID: 26041061 [TBL] [Abstract][Full Text] [Related]
18. A method for improving the accuracy of calibration-free laser-induced breakdown spectroscopy by exploiting self-absorption. Hu Z; Chen F; Zhang D; Chu Y; Wang W; Tang Y; Guo L Anal Chim Acta; 2021 Oct; 1183():339008. PubMed ID: 34627502 [TBL] [Abstract][Full Text] [Related]
19. Use of LIBS for rapid characterization of parchment. Dolgin B; Chen Y; Bulatov V; Schechter I Anal Bioanal Chem; 2006 Nov; 386(5):1535-41. PubMed ID: 16896611 [TBL] [Abstract][Full Text] [Related]
20. Detection of contaminants in ore samples using laser-induced breakdown spectroscopy. Gondal MA; Hussain T; Ahmed Z; Bakry AH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):879-87. PubMed ID: 17558768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]