These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29600450)

  • 41. Pollution monitor for nitric oxide: a laser device based on the Zeeman modulation of absorption.
    Kaldor A; Olson WB; Maki AG
    Science; 1972 May; 176(4034):508-10. PubMed ID: 5032349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Quantum Cascade Laser-Based Optical Sensor for Continuous Monitoring of Environmental Methane in Dunkirk (France).
    Maamary R; Cui X; Fertein E; Augustin P; Fourmentin M; Dewaele D; Cazier F; Guinet L; Chen W
    Sensors (Basel); 2016 Feb; 16(2):224. PubMed ID: 26867196
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The ac Stark effect in nitric oxide induced by rapidly swept continuous wave quantum cascade lasers.
    Duxbury G; Kelly JF; Blake TA; Langford N
    J Chem Phys; 2012 May; 136(17):174318. PubMed ID: 22583241
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast infrared chemical imaging with a quantum cascade laser.
    Yeh K; Kenkel S; Liu JN; Bhargava R
    Anal Chem; 2015 Jan; 87(1):485-93. PubMed ID: 25474546
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mid-infrared quantum cascade lasers for flow injection analysis.
    Lendl B; Frank J; Schindler R; Muller A; Beck M; Faist J
    Anal Chem; 2000 Apr; 72(7):1645-8. PubMed ID: 10763264
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Current approaches to measure nitric oxide in plants.
    Vishwakarma A; Wany A; Pandey S; Bulle M; Kumari A; Kishorekumar R; Igamberdiev AU; Mur LAJ; Gupta KJ
    J Exp Bot; 2019 Aug; 70(17):4333-4343. PubMed ID: 31106826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere.
    Nelson DD; McManus JB; Herndon SC; Shorter JH; Zahniser MS; Blaser S; Hvozdara L; Muller A; Giovannini M; Faist J
    Opt Lett; 2006 Jul; 31(13):2012-4. PubMed ID: 16770416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contributed review: quantum cascade laser based photoacoustic detection of explosives.
    Li JS; Yu B; Fischer H; Chen W; Yalin AP
    Rev Sci Instrum; 2015 Mar; 86(3):031501. PubMed ID: 25832204
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New Opportunities in Mid-Infrared Emission Control.
    Geiser P
    Sensors (Basel); 2015 Sep; 15(9):22724-36. PubMed ID: 26371003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantum cascade laser absorption spectroscopy as a plasma diagnostic tool: an overview.
    Welzel S; Hempel F; Hübner M; Lang N; Davies PB; Röpcke J
    Sensors (Basel); 2010; 10(7):6861-900. PubMed ID: 22163581
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Online Detection of Functional Groups in SEC via Quantum Cascade Laser IR Spectroscopy.
    Morlock S; Kübel JM; Beskers TF; Lendl B; Wilhelm M
    Macromol Rapid Commun; 2018 Jan; 39(2):. PubMed ID: 29094443
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sub-parts-per-billion level detection of dimethyl methyl phosphonate (DMMP) by quantum cascade laser photoacoustic spectroscopy.
    Mukherjee A; Dunayevskiy I; Prasanna M; Go R; Tsekoun A; Wang X; Fan J; Patel CK
    Appl Opt; 2008 Apr; 47(10):1543-8. PubMed ID: 18382583
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Absorption spectroscopy: technique provides extremely high sensitivity.
    Provencal RA; Paul JB; Michael E; Saykally RJ
    Photonics Spectra; 1998 Jun; 32(6):159-66. PubMed ID: 11541906
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Time resolved simultaneous detection of 14NO and 15NO via mid-infrared cavity leak-out spectroscopy.
    Halmer D; von Basum G; Horstjann M; Hering P; Mürtz M
    Isotopes Environ Health Stud; 2005 Dec; 41(4):303-11. PubMed ID: 16543186
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laser-based method and sample handling protocol for measuring breath acetone.
    Hancock G; Langley CE; Peverall R; Ritchie GA; Taylor D
    Anal Chem; 2014 Jun; 86(12):5838-43. PubMed ID: 24831456
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Specific detection of gaseous NO and 15NO in the headspace from liquid-phase reactions involving NO-generating organic, inorganic, and biochemical samples using a mid-infrared laser.
    Yi J; Namjou K; Zahran ZN; McCann PJ; Richter-Addo GB
    Nitric Oxide; 2006 Sep; 15(2):154-62. PubMed ID: 16540356
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantum cascade lasers (QCLs) in biomedical spectroscopy.
    Schwaighofer A; Brandstetter M; Lendl B
    Chem Soc Rev; 2017 Oct; 46(19):5903-5924. PubMed ID: 28816307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantum cascade laser based standoff photoacoustic chemical detection.
    Chen X; Cheng L; Guo D; Kostov Y; Choa FS
    Opt Express; 2011 Oct; 19(21):20251-7. PubMed ID: 21997036
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A compact QCL based methane and nitrous oxide sensor for environmental and medical applications.
    Jahjah M; Ren W; Stefański P; Lewicki R; Zhang J; Jiang W; Tarka J; Tittel FK
    Analyst; 2014 May; 139(9):2065-9. PubMed ID: 24427770
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring.
    Siciliani de Cumis M; Viciani S; Borri S; Patimisco P; Sampaolo A; Scamarcio G; De Natale P; D'Amato F; Spagnolo V
    Opt Express; 2014 Nov; 22(23):28222-31. PubMed ID: 25402062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.