These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 29600499)
1. Isoflurane anesthesia does not affect spinal cord neurovascular coupling: evidence from decerebrated rats. Paquette T; Leblond H; Piché M J Physiol Sci; 2019 Jan; 69(1):13-21. PubMed ID: 29600499 [TBL] [Abstract][Full Text] [Related]
2. Tight neurovascular coupling in the spinal cord during nociceptive stimulation in intact and spinal rats. Piché M; Paquette T; Leblond H Neuroscience; 2017 Jul; 355():1-8. PubMed ID: 28479402 [TBL] [Abstract][Full Text] [Related]
3. Contribution of astrocytes to neurovascular coupling in the spinal cord of the rat. Paquette T; Piché M; Leblond H J Physiol Sci; 2021 May; 71(1):16. PubMed ID: 34049480 [TBL] [Abstract][Full Text] [Related]
4. Systemic blood pressure alters cortical blood flow and neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat. Uchida S; Bois S; Guillemot JP; Leblond H; Piché M Neuroscience; 2017 Feb; 343():250-259. PubMed ID: 27998779 [TBL] [Abstract][Full Text] [Related]
5. Spinal neurovascular coupling is preserved despite time-dependent alterations of spinal cord blood flow responses in a rat model of chronic back pain: implications for functional spinal cord imaging. Paquette T; Eskandari N; Leblond H; Piché M Pain; 2023 Apr; 164(4):758-770. PubMed ID: 36036900 [TBL] [Abstract][Full Text] [Related]
6. Spinal cord blood flow change by intravenous midazolam during isoflurane anesthesia. Nishiyama T Anesth Analg; 2005 Jul; 101(1):242-5, table of contents. PubMed ID: 15976239 [TBL] [Abstract][Full Text] [Related]
7. Effects of desflurane on spinal somatosensory-evoked potentials and conductive spinal cord evoked potential. Jou IM; Chern TC; Chen TY; Tsai YC Spine (Phila Pa 1976); 2003 Aug; 28(16):1845-50. PubMed ID: 12923473 [TBL] [Abstract][Full Text] [Related]
8. The effects of isoflurane on conditioned inhibition by dorsal column stimulation. Tobita T; Okamoto M; Shimizu M; Yamakura T; Fujihara H; Shimoji K; Baba H Anesth Analg; 2003 Aug; 97(2):436-441. PubMed ID: 12873931 [TBL] [Abstract][Full Text] [Related]
9. Hemodynamic responses in the rat hippocampus are simultaneously controlled by at least two independently acting neurovascular coupling mechanisms. Arboit A; Krautwald K; Angenstein F J Cereb Blood Flow Metab; 2024 Jun; 44(6):896-910. PubMed ID: 38087890 [TBL] [Abstract][Full Text] [Related]
10. Isoflurane depresses windup of C fiber-evoked limb withdrawal with variable effects on nociceptive lumbar spinal neurons in rats. Jinks SL; Antognini JF; Dutton RC; Carstens E; Eger EI Anesth Analg; 2004 Nov; 99(5):1413-1419. PubMed ID: 15502040 [TBL] [Abstract][Full Text] [Related]
11. Neurons in the ventral spinal cord are more depressed by isoflurane, halothane, and propofol than are neurons in the dorsal spinal cord. Kim J; Yao A; Atherley R; Carstens E; Jinks SL; Antognini JF Anesth Analg; 2007 Oct; 105(4):1020-6, table of contents. PubMed ID: 17898382 [TBL] [Abstract][Full Text] [Related]
12. Fasting prevents medetomidine-induced hyperglycaemia and alterations of neurovascular coupling in the somatosensory cortex of the rat during noxious stimulation. Tokunaga R; Paquette T; Tsurugizawa T; Leblond H; Piché M Eur J Neurosci; 2021 Aug; 54(3):4906-4919. PubMed ID: 34137097 [TBL] [Abstract][Full Text] [Related]
13. Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex. Masamoto K; Fukuda M; Vazquez A; Kim SG Eur J Neurosci; 2009 Jul; 30(2):242-50. PubMed ID: 19659924 [TBL] [Abstract][Full Text] [Related]
14. Volatile anesthetic effects on midbrain-elicited locomotion suggest that the locomotor network in the ventral spinal cord is the primary site for immobility. Jinks SL; Bravo M; Hayes SG Anesthesiology; 2008 Jun; 108(6):1016-24. PubMed ID: 18497602 [TBL] [Abstract][Full Text] [Related]
15. Effects of intrathecal isoflurane administration on nociception and Fos expression in the rat spinal cord. Liu CR; Duan QZ; Wang W; Wei YY; Zhang H; Li YQ; Wu SX; Xu LX Eur J Anaesthesiol; 2011 Feb; 28(2):112-9. PubMed ID: 21107265 [TBL] [Abstract][Full Text] [Related]
16. Functional Neuroimaging of Nociceptive and Pain-Related Activity in the Spinal Cord and Brain: Insights From Neurovascular Coupling Studies. Paquette T; Jeffrey-Gauthier R; Leblond H; PichÉ M Anat Rec (Hoboken); 2018 Sep; 301(9):1585-1595. PubMed ID: 29752872 [TBL] [Abstract][Full Text] [Related]
17. Acetylcholine receptors do not mediate isoflurane's actions on spinal cord in vitro. Wong SM; Sonner JM; Kendig JJ Anesth Analg; 2002 Jun; 94(6):1495-9, table of contents. PubMed ID: 12032014 [TBL] [Abstract][Full Text] [Related]
18. Water apparent diffusion coefficient correlates with gamma oscillation of local field potentials in the rat brain nucleus accumbens following alcohol injection. Tsurugizawa T; Abe Y; Le Bihan D J Cereb Blood Flow Metab; 2017 Sep; 37(9):3193-3202. PubMed ID: 28058981 [TBL] [Abstract][Full Text] [Related]
19. Isoflurane depresses diffuse noxious inhibitory controls in rats between 0.8 and 1.2 minimum alveolar anesthetic concentration. Jinks SL; Antognini JF; Carstens E Anesth Analg; 2003 Jul; 97(1):111-6, table of contents. PubMed ID: 12818952 [TBL] [Abstract][Full Text] [Related]
20. TREK1 activation mediates spinal cord ischemic tolerance induced by isoflurane preconditioning in rats. Yin X; Su B; Zhang H; Song W; Wu H; Chen X; Zhang X; Dong H; Xiong L Neurosci Lett; 2012 May; 515(2):115-20. PubMed ID: 22425721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]