These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29600712)

  • 21. Patch-clamp measurement of ICRAC and ORAI channel activity.
    Alansary D; Kilch T; Holzmann C; Peinelt C; Hoth M; Lis A
    Cold Spring Harb Protoc; 2014 Jun; 2014(6):602-7. PubMed ID: 24890214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel.
    Trofimov YA; Krylov NA; Efremov RG
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31480555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.
    Kaufman I; Luchinsky DG; Tindjong R; McClintock PV; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052712. PubMed ID: 24329301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional Analysis of Orai1 Concatemers Supports a Hexameric Stoichiometry for the CRAC Channel.
    Yen M; Lokteva LA; Lewis RS
    Biophys J; 2016 Nov; 111(9):1897-1907. PubMed ID: 27806271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calumin, a Ca²⁺-binding protein on the endoplasmic reticulum, alters the ion permeability of Ca²⁺ release-activated Ca²⁺ (CRAC) channels.
    Konno M; Shirakawa H; Miyake T; Sakimoto S; Nakagawa T; Kaneko S
    Biochem Biophys Res Commun; 2012 Jan; 417(2):784-9. PubMed ID: 22197811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular pore structure of voltage-gated sodium and calcium channels.
    Heinemann SH; Schlief T; Mori Y; Imoto K
    Braz J Med Biol Res; 1994 Dec; 27(12):2781-802. PubMed ID: 7550000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and function of endoplasmic reticulum STIM calcium sensors.
    Stathopulos PB; Ikura M
    Curr Top Membr; 2013; 71():59-93. PubMed ID: 23890111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Mechanism of Ionic Conductivity of the TRPV1 Channel.
    Trofimov YA; Minakov AS; Krylov NA; Efremov RG
    Dokl Biochem Biophys; 2023 Feb; 508(1):1-5. PubMed ID: 36653581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Permeation and dynamics of an open-activated TRPV1 channel.
    Darré L; Furini S; Domene C
    J Mol Biol; 2015 Jan; 427(2):537-49. PubMed ID: 25479373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?
    Tarek M; Delemotte L
    Acc Chem Res; 2013 Dec; 46(12):2755-62. PubMed ID: 23697886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity.
    Zhang SL; Yeromin AV; Zhang XH; Yu Y; Safrina O; Penna A; Roos J; Stauderman KA; Cahalan MD
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9357-62. PubMed ID: 16751269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum mechanical calculations of charge effects on gating the KcsA channel.
    Kariev AM; Znamenskiy VS; Green ME
    Biochim Biophys Acta; 2007 May; 1768(5):1218-29. PubMed ID: 17336921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glu¹⁰⁶ in the Orai1 pore contributes to fast Ca²⁺-dependent inactivation and pH dependence of Ca²⁺ release-activated Ca²⁺ (CRAC) current.
    Scrimgeour NR; Wilson DP; Rychkov GY
    Biochem J; 2012 Jan; 441(2):743-53. PubMed ID: 21967483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic view on domains mediating STIM1-Orai coupling.
    Fahrner M; Muik M; Derler I; Schindl R; Fritsch R; Frischauf I; Romanin C
    Immunol Rev; 2009 Sep; 231(1):99-112. PubMed ID: 19754892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.
    Vaisey G; Miller AN; Long SB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7399-E7408. PubMed ID: 27821745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. STIM-TRP Pathways and Microdomain Organization: Auxiliary Proteins of the STIM/Orai Complex.
    Pacheco J; Vaca L
    Adv Exp Med Biol; 2017; 993():189-210. PubMed ID: 28900915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A calcium-redox feedback loop controls human monocyte immune responses: The role of ORAI Ca2+ channels.
    Saul S; Gibhardt CS; Schmidt B; Lis A; Pasieka B; Conrad D; Jung P; Gaupp R; Wonnenberg B; Diler E; Stanisz H; Vogt T; Schwarz EC; Bischoff M; Herrmann M; Tschernig T; Kappl R; Rieger H; Niemeyer BA; Bogeski I
    Sci Signal; 2016 Mar; 9(418):ra26. PubMed ID: 26956485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular determinant for specific Ca/Ba selectivity profiles of low and high threshold Ca2+ channels.
    Cens T; Rousset M; Kajava A; Charnet P
    J Gen Physiol; 2007 Oct; 130(4):415-25. PubMed ID: 17893194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels.
    Peters CJ; Yu H; Tien J; Jan YN; Li M; Jan LY
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3547-52. PubMed ID: 25733897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of metal hydration on the selectivity of Mg2+ versus Ca2+ in magnesium ion channels.
    Dudev T; Lim C
    J Am Chem Soc; 2013 Nov; 135(45):17200-8. PubMed ID: 24087890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.