These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29600855)

  • 21. Improving the catalytic efficiency of a meta-cleavage product hydrolase (CumD) from Pseudomonas fluorescens IP01.
    Jun SY; Fushinobu S; Nojiri H; Omori T; Shoun H; Wakagi T
    Biochim Biophys Acta; 2006 Jul; 1764(7):1159-66. PubMed ID: 16844437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity.
    Palm GJ; Fernández-Álvaro E; Bogdanović X; Bartsch S; Sczodrok J; Singh RK; Böttcher D; Atomi H; Bornscheuer UT; Hinrichs W
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1061-72. PubMed ID: 21614503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.
    Huang X; Xue J; Lin M; Zhu Y
    PLoS One; 2016; 11(5):e0156559. PubMed ID: 27243223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased enantioselectivity by engineering bottleneck mutants in an esterase from Pseudomonas fluorescens.
    Schliessmann A; Hidalgo A; Berenguer J; Bornscheuer UT
    Chembiochem; 2009 Dec; 10(18):2920-3. PubMed ID: 19847842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determinants and Prediction of Esterase Substrate Promiscuity Patterns.
    Martínez-Martínez M; Coscolín C; Santiago G; Chow J; Stogios PJ; Bargiela R; Gertler C; Navarro-Fernández J; Bollinger A; Thies S; Méndez-García C; Popovic A; Brown G; Chernikova TN; García-Moyano A; Bjerga GEK; Pérez-García P; Hai T; Del Pozo MV; Stokke R; Steen IH; Cui H; Xu X; Nocek BP; Alcaide M; Distaso M; Mesa V; Peláez AI; Sánchez J; Buchholz PCF; Pleiss J; Fernández-Guerra A; Glöckner FO; Golyshina OV; Yakimov MM; Savchenko A; Jaeger KE; Yakunin AF; Streit WR; Golyshin PN; Guallar V; Ferrer M; The Inmare Consortium
    ACS Chem Biol; 2018 Jan; 13(1):225-234. PubMed ID: 29182315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site.
    Sayer C; Finnigan W; Isupov MN; Levisson M; Kengen SW; van der Oost J; Harmer NJ; Littlechild JA
    Sci Rep; 2016 May; 6():25542. PubMed ID: 27160974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal Structure and Functional Characterization of an Esterase (EaEST) from Exiguobacterium antarcticum.
    Lee CW; Kwon S; Park SH; Kim BY; Yoo W; Ryu BH; Kim HW; Shin SC; Kim S; Park H; Kim TD; Lee JH
    PLoS One; 2017; 12(1):e0169540. PubMed ID: 28125606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel Subfamily Esterase with a Homoserine Transacetylase-like Fold but No Transferase Activity.
    Li PY; Yao QQ; Wang P; Zhang Y; Li Y; Zhang YQ; Hao J; Zhou BC; Chen XL; Shi M; Zhang YZ; Zhang XY
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and action of a C-C bond cleaving alpha/beta-hydrolase involved in nicotine degradation.
    Schleberger C; Sachelaru P; Brandsch R; Schulz GE
    J Mol Biol; 2007 Mar; 367(2):409-18. PubMed ID: 17275835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Silico Engineering of Enzyme Access Tunnels.
    Gautieri A; Rigoldi F; Torretta A; Redaelli A; Parisini E
    Methods Mol Biol; 2022; 2397():203-225. PubMed ID: 34813066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional characterization of hypothetical proteins of Mycobacterium tuberculosis with possible esterase/lipase signature: a cumulative in silico and in vitro approach.
    Kumar A; Sharma A; Kaur G; Makkar P; Kaur J
    J Biomol Struct Dyn; 2017 May; 35(6):1226-1243. PubMed ID: 27050490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The structure at 1.6 Angstroms resolution of the protein product of the At4g34215 gene from Arabidopsis thaliana.
    Bitto E; Bingman CA; McCoy JG; Allard ST; Wesenberg GE; Phillips GN
    Acta Crystallogr D Biol Crystallogr; 2005 Dec; 61(Pt 12):1655-61. PubMed ID: 16301800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad.
    Suzuki K; Hori A; Kawamoto K; Thangudu RR; Ishida T; Igarashi K; Samejima M; Yamada C; Arakawa T; Wakagi T; Koseki T; Fushinobu S
    Proteins; 2014 Oct; 82(10):2857-67. PubMed ID: 25066066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial hydrolase based on carbon nanotubes conjugated with peptides.
    Zhang Q; He X; Han A; Tu Q; Fang G; Liu J; Wang S; Li H
    Nanoscale; 2016 Sep; 8(38):16851-16856. PubMed ID: 27714071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Free energy analysis of ω-transaminase reactions to dissect how the enzyme controls the substrate selectivity.
    Park ES; Shin JS
    Enzyme Microb Technol; 2011 Sep; 49(4):380-7. PubMed ID: 22112564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effect of site-directed mutagenesis on soluble expression and specific activity of amide hydrolase DamH].
    Wang F; Li Z; Zhou J; Cui Z
    Wei Sheng Wu Xue Bao; 2015 Dec; 55(12):1584-92. PubMed ID: 27101701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A peptide dendrimer enzyme model with a single catalytic site at the core.
    Javor S; Delort E; Darbre T; Reymond JL
    J Am Chem Soc; 2007 Oct; 129(43):13238-46. PubMed ID: 17924626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted reengineering of protein geranylgeranyltransferase type I selectivity functionally implicates active-site residues in protein-substrate recognition.
    Gangopadhyay SA; Losito EL; Hougland JL
    Biochemistry; 2014 Jan; 53(2):434-46. PubMed ID: 24344934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Molecular engineering of cellulase catalytic domain based on glycoside hydrolase family].
    Zhang X; Li D; Wang L; Zhao Y; Chen G
    Sheng Wu Gong Cheng Xue Bao; 2013 Apr; 29(4):422-33. PubMed ID: 23894816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.