These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29600855)

  • 61. Crystal structure of tannase from Lactobacillus plantarum.
    Ren B; Wu M; Wang Q; Peng X; Wen H; McKinstry WJ; Chen Q
    J Mol Biol; 2013 Aug; 425(15):2737-51. PubMed ID: 23648840
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhancing H
    Zhou P; Lan D; Popowicz GM; Wang X; Yang B; Wang Y
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5689-5697. PubMed ID: 28516207
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes.
    Rao L; Xue Y; Zhou C; Tao J; Li G; Lu JR; Ma Y
    Biochim Biophys Acta; 2011 Dec; 1814(12):1695-702. PubMed ID: 21907313
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The catalytic triad of the influenza C virus glycoprotein HEF esterase: characterization by site-directed mutagenesis and functional analysis.
    Pleschka S; Klenk HD; Herrler G
    J Gen Virol; 1995 Oct; 76 ( Pt 10)():2529-37. PubMed ID: 7595356
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characterization of a tannin acyl hydrolase from Streptomyces sviceus with substrate preference for digalloyl ester bonds.
    Wu M; Wang Q; McKinstry WJ; Ren B
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2663-72. PubMed ID: 25246309
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues.
    Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z
    Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Structural basis of poly(3-hydroxybutyrate) hydrolysis by PhaZ7 depolymerase from Paucimonas lemoignei.
    Papageorgiou AC; Hermawan S; Singh CB; Jendrossek D
    J Mol Biol; 2008 Oct; 382(5):1184-94. PubMed ID: 18706425
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Functional tuning of the catalytic residue pK
    Hiebler K; Lengyel Z; Castañeda CA; Makhlynets OV
    Proteins; 2017 Sep; 85(9):1656-1665. PubMed ID: 28544090
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Crystal structure and biochemical properties of a novel thermostable esterase containing an immunoglobulin-like domain.
    Levisson M; Sun L; Hendriks S; Swinkels P; Akveld T; Bultema JB; Barendregt A; van den Heuvel RH; Dijkstra BW; van der Oost J; Kengen SW
    J Mol Biol; 2009 Jan; 385(3):949-62. PubMed ID: 19013466
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B.
    Magnusson AO; Rotticci-Mulder JC; Santagostino A; Hult K
    Chembiochem; 2005 Jun; 6(6):1051-6. PubMed ID: 15883973
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 3D Structure Modeling of Alpha-Amino Acid Ester Hydrolase from Xanthomonas rubrilineans.
    Zarubina SA; Uporov IV; Fedorchuk EA; Fedorchuk VV; Sklyarenko AV; Yarotsky SV; Tishkov VI
    Acta Naturae; 2013 Oct; 5(4):62-70. PubMed ID: 24455184
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparative Bioinformatic Analysis of Active Site Structures in Evolutionarily Remote Homologues of α,β-Hydrolase Superfamily Enzymes.
    Suplatov DA; Arzhanik VK; Svedas VK
    Acta Naturae; 2011 Jan; 3(1):93-8. PubMed ID: 22649677
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Engineering enzyme access tunnels.
    Kokkonen P; Bednar D; Pinto G; Prokop Z; Damborsky J
    Biotechnol Adv; 2019 Nov; 37(6):107386. PubMed ID: 31026496
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Transesterification of Non-Activated Esters Promoted by Small Molecules Mimicking the Active Site of Hydrolases.
    Garrido-González JJ; Sánchez-Santos E; Habib A; Cuevas Ferreras ÁV; Sanz F; Morán JR; Fuentes de Arriba ÁL
    Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202206072. PubMed ID: 35580193
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Molecular mechanism of LIP05 derived from
    Zhao J; Xu Y; Lu H; Zhao D; Zheng J; Lin M; Liang X; Ding Z; Dong W; Yang M; Li W; Zhang C; Sun B; Li X
    Front Microbiol; 2022; 13():1107104. PubMed ID: 36713181
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion.
    Zong Z; Mazurkewich S; Pereira CS; Fu H; Cai W; Shao X; Skaf MS; Larsbrink J; Lo Leggio L
    Nat Commun; 2022 Mar; 13(1):1449. PubMed ID: 35304453
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Investigation on substrate specificity and catalytic activity of serine protease neuropsin.
    Lintuluoto M; Abe M; Horioka Y; Fukunishi Y; Tamura H; M Lintuluoto J
    Biophys Physicobiol; 2022; 19():e190040. PubMed ID: 36349321
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Engineering the Active Site Pocket to Enhance the Catalytic Efficiency of a Novel Feruloyl Esterase Derived From Human Intestinal Bacteria
    Shen Y; Wang Y; Wei X; Wen B; Liu S; Tan H; Zhang J; Shao S; Xin F
    Front Bioeng Biotechnol; 2022; 10():936914. PubMed ID: 35795165
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis.
    Gulseren G; Khalily MA; Tekinay AB; Guler MO
    J Mater Chem B; 2016 Jul; 4(26):4605-4611. PubMed ID: 32263403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.