These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 29601184)
1. Exploring Conditions for Ultrafine Particle Formation from Oxidation of Cigarette Smoke in Indoor Environments. Wang C; Collins DB; Hems RF; Borduas N; Antiñolo M; Abbatt JPD Environ Sci Technol; 2018 Apr; 52(8):4623-4631. PubMed ID: 29601184 [TBL] [Abstract][Full Text] [Related]
2. Ozone and limonene in indoor air: a source of submicron particle exposure. Wainman T; Zhang J; Weschler CJ; Lioy PJ Environ Health Perspect; 2000 Dec; 108(12):1139-45. PubMed ID: 11133393 [TBL] [Abstract][Full Text] [Related]
3. Sources of isocyanic acid (HNCO) indoors: a focus on cigarette smoke. Hems RF; Wang C; Collins DB; Zhou S; Borduas-Dedekind N; Siegel JA; Abbatt JPD Environ Sci Process Impacts; 2019 Aug; 21(8):1334-1341. PubMed ID: 30976776 [TBL] [Abstract][Full Text] [Related]
4. Chemical changes in thirdhand smoke associated with remediation using an ozone generator. Tang X; González NR; Russell ML; Maddalena RL; Gundel LA; Destaillats H Environ Res; 2021 Jul; 198():110462. PubMed ID: 33217439 [TBL] [Abstract][Full Text] [Related]
5. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment. Rösch C; Wissenbach DK; von Bergen M; Franck U; Wendisch M; Schlink U Environ Sci Pollut Res Int; 2015 Sep; 22(18):14209-19. PubMed ID: 25966888 [TBL] [Abstract][Full Text] [Related]
6. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Afshari A; Matson U; Ekberg LE Indoor Air; 2005 Apr; 15(2):141-50. PubMed ID: 15737157 [TBL] [Abstract][Full Text] [Related]
7. Outdoor fine and ultrafine particle measurements at six bus stops with smoking on two California arterial highways--results of a pilot study. Ott WR; Acevedo-Bolton V; Cheng KC; Jiang RT; Klepeis NE; Hildemann LM J Air Waste Manag Assoc; 2014 Jan; 64(1):47-60. PubMed ID: 24620402 [TBL] [Abstract][Full Text] [Related]
8. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Fan Z; Lioy P; Weschler C; Fiedler N; Kipen H; Zhang J Environ Sci Technol; 2003 May; 37(9):1811-21. PubMed ID: 12775052 [TBL] [Abstract][Full Text] [Related]
9. Thirdhand smoke uptake to aerosol particles in the indoor environment. DeCarlo PF; Avery AM; Waring MS Sci Adv; 2018 May; 4(5):eaap8368. PubMed ID: 29750194 [TBL] [Abstract][Full Text] [Related]
10. Size-Resolved Source Emission Rates of Indoor Ultrafine Particles Considering Coagulation. Rim D; Choi JI; Wallace LA Environ Sci Technol; 2016 Sep; 50(18):10031-8. PubMed ID: 27181617 [TBL] [Abstract][Full Text] [Related]
11. Children exposure to indoor ultrafine particles in urban and rural school environments. Cavaleiro Rufo J; Madureira J; Paciência I; Slezakova K; Pereira Mdo C; Aguiar L; Teixeira JP; Moreira A; Oliveira Fernandes E Environ Sci Pollut Res Int; 2016 Jul; 23(14):13877-85. PubMed ID: 27040535 [TBL] [Abstract][Full Text] [Related]
12. Personal exposure to ultrafine particles. Wallace L; Ott W J Expo Sci Environ Epidemiol; 2011; 21(1):20-30. PubMed ID: 20087407 [TBL] [Abstract][Full Text] [Related]
13. Indoor Illumination of Terpenes and Bleach Emissions Leads to Particle Formation and Growth. Wang C; Collins DB; Abbatt JPD Environ Sci Technol; 2019 Oct; 53(20):11792-11800. PubMed ID: 31576741 [TBL] [Abstract][Full Text] [Related]
14. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings. Hubbard HF; Coleman BK; Sarwar G; Corsi RL Indoor Air; 2005 Dec; 15(6):432-44. PubMed ID: 16268833 [TBL] [Abstract][Full Text] [Related]
15. Outdoor and indoor UFP in primary schools across Barcelona. Reche C; Viana M; Rivas I; Bouso L; Àlvarez-Pedrerol M; Alastuey A; Sunyer J; Querol X Sci Total Environ; 2014 Sep; 493():943-53. PubMed ID: 25003584 [TBL] [Abstract][Full Text] [Related]
16. The influence of three e-cigarette models on indoor fine and ultrafine particulate matter concentrations under real-world conditions. Volesky KD; Maki A; Scherf C; Watson L; Van Ryswyk K; Fraser B; Weichenthal SA; Cassol E; Villeneuve PJ Environ Pollut; 2018 Dec; 243(Pt B):882-889. PubMed ID: 30245450 [TBL] [Abstract][Full Text] [Related]
17. Combustion Processes as a Source of High Levels of Indoor Hydroxyl Radicals through the Photolysis of Nitrous Acid. Bartolomei V; Gomez Alvarez E; Wittmer J; Tlili S; Strekowski R; Temime-Roussel B; Quivet E; Wortham H; Zetzsch C; Kleffmann J; Gligorovski S Environ Sci Technol; 2015 Jun; 49(11):6599-607. PubMed ID: 25942056 [TBL] [Abstract][Full Text] [Related]
19. Indoor ultrafine particle exposures and home heating systems: a cross-sectional survey of Canadian homes during the winter months. Weichenthal S; Dufresne A; Infante-Rivard C; Joseph L J Expo Sci Environ Epidemiol; 2007 May; 17(3):288-97. PubMed ID: 17033678 [TBL] [Abstract][Full Text] [Related]
20. Ultrafine Particle Production from the Ozonolysis of Personal Care Products. Vannucci MP; Nazaroff WW Environ Sci Technol; 2017 Nov; 51(21):12737-12744. PubMed ID: 28991442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]