These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29601202)

  • 41. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.
    Mackie ID; DiLabio GA
    J Chem Phys; 2011 Oct; 135(13):134318. PubMed ID: 21992316
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of intermolecular interaction energies from SAPT and DFT including empirical dispersion contributions.
    Hesselmann A
    J Phys Chem A; 2011 Oct; 115(41):11321-30. PubMed ID: 21806071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals.
    Xu X; Truhlar DG
    J Chem Theory Comput; 2012 Jan; 8(1):80-90. PubMed ID: 26592870
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calculation of weakly polar interaction energies in polypeptides using density functional and local Møller-Plesset perturbation theory.
    Csontos J; Palermo NY; Murphy RF; Lovas S
    J Comput Chem; 2008 Jun; 29(8):1344-52. PubMed ID: 18172837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability.
    Schwabe T; Grimme S
    Phys Chem Chem Phys; 2007 Jul; 9(26):3397-406. PubMed ID: 17664963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Subsystem-DFT potential-energy curves for weakly interacting systems.
    Schlüns D; Klahr K; Mück-Lichtenfeld C; Visscher L; Neugebauer J
    Phys Chem Chem Phys; 2015 Jun; 17(22):14323-41. PubMed ID: 25536412
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Basis set consistent revision of the S22 test set of noncovalent interaction energies.
    Takatani T; Hohenstein EG; Malagoli M; Marshall MS; Sherrill CD
    J Chem Phys; 2010 Apr; 132(14):144104. PubMed ID: 20405982
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level.
    Dabkowska I; Jurecka P; Hobza P
    J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.
    Amin EA; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Does DFT-D estimate accurate energies for the binding of ligands to metal complexes?
    Ryde U; Mata RA; Grimme S
    Dalton Trans; 2011 Nov; 40(42):11176-83. PubMed ID: 21853206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploring the limit of accuracy for density functionals based on the generalized gradient approximation: local, global hybrid, and range-separated hybrid functionals with and without dispersion corrections.
    Mardirossian N; Head-Gordon M
    J Chem Phys; 2014 May; 140(18):18A527. PubMed ID: 24832335
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ground-State Gas-Phase Structures of Inorganic Molecules Predicted by Density Functional Theory Methods.
    Minenkov Y; Cavallo L
    ACS Omega; 2017 Nov; 2(11):8373-8387. PubMed ID: 31457376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Hierarchy of Methods for the Energetically Accurate Modeling of Isomerism in Monosaccharides.
    Sameera WM; Pantazis DA
    J Chem Theory Comput; 2012 Aug; 8(8):2630-45. PubMed ID: 26592108
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accurate and Efficient Model Energies for Exploring Intermolecular Interactions in Molecular Crystals.
    Turner MJ; Grabowsky S; Jayatilaka D; Spackman MA
    J Phys Chem Lett; 2014 Dec; 5(24):4249-55. PubMed ID: 26273970
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Infinite-basis calculations of binding energies for the hydrogen bonded and stacked tetramers of formic acid and formamide and their use for validation of hybrid DFT and ab initio methods.
    Zhao Y; Truhlar DG
    J Phys Chem A; 2005 Aug; 109(30):6624-7. PubMed ID: 16834013
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase.
    Grimme S; Steinmetz M
    Phys Chem Chem Phys; 2013 Oct; 15(38):16031-42. PubMed ID: 23963317
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes.
    Corminboeuf C
    Acc Chem Res; 2014 Nov; 47(11):3217-24. PubMed ID: 24655016
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance of Density Functionals for Activation Energies of Re-Catalyzed Organic Reactions.
    Sun Y; Chen H
    J Chem Theory Comput; 2014 Feb; 10(2):579-88. PubMed ID: 26580034
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Choosing a density functional for modeling adsorptive hydrogen storage: reference quantum mechanical calculations and a comparison of dispersion-corrected density functionals.
    Kocman M; Jurečka P; Dubecký M; Otyepka M; Cho Y; Kim KS
    Phys Chem Chem Phys; 2015 Mar; 17(9):6423-32. PubMed ID: 25655486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.