BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29601571)

  • 41. A cluster of pathogenic mutations in the 3'-5' exonuclease domain of DNA polymerase gamma defines a novel module coupling DNA synthesis and degradation.
    Szczepanowska K; Foury F
    Hum Mol Genet; 2010 Sep; 19(18):3516-29. PubMed ID: 20601675
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Feeding the deoxyribonucleoside salvage pathway to rescue mitochondrial DNA.
    Cámara Y; González-Vioque E; Scarpelli M; Torres-Torronteras J; Martí R
    Drug Discov Today; 2013 Oct; 18(19-20):950-7. PubMed ID: 23817075
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Increased Spontaneous Recombination in RNase H2-Deficient Cells Arises From Multiple Contiguous rNMPs and Not From Single rNMP Residues Incorporated by DNA Polymerase Epsilon.
    Epshtein A; Potenski CJ; Klein HL
    Microb Cell; 2016 Jun; 3(6):248-254. PubMed ID: 28203566
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Steric gate residues of Y-family DNA polymerases DinB and pol kappa are crucial for dNTP-induced conformational change.
    Nevin P; Engen JR; Beuning PJ
    DNA Repair (Amst); 2015 May; 29():65-73. PubMed ID: 25684709
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antiretroviral nucleosides, deoxynucleotide carrier and mitochondrial DNA: evidence supporting the DNA pol gamma hypothesis.
    Lewis W; Kohler JJ; Hosseini SH; Haase CP; Copeland WC; Bienstock RJ; Ludaway T; McNaught J; Russ R; Stuart T; Santoianni R
    AIDS; 2006 Mar; 20(5):675-84. PubMed ID: 16514297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic mechanisms governing stable ribonucleotide incorporation in individual DNA polymerase complexes.
    Dahl JM; Wang H; Lázaro JM; Salas M; Lieberman KR
    Biochemistry; 2014 Dec; 53(51):8061-76. PubMed ID: 25478721
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Mitochondrial DNA Polymerase Promotes Elimination of Paternal Mitochondrial Genomes.
    Yu Z; O'Farrell PH; Yakubovich N; DeLuca SZ
    Curr Biol; 2017 Apr; 27(7):1033-1039. PubMed ID: 28318978
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Suppression of mitochondrial transcription initiation complexes changes the balance of replication intermediates of mitochondrial DNA and reduces 7S DNA in cultured human cells.
    Qu J; Yasukawa T; Kang D
    J Biochem; 2016 Jul; 160(1):49-57. PubMed ID: 26861994
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity.
    Song S; Pursell ZF; Copeland WC; Longley MJ; Kunkel TA; Mathews CK
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):4990-5. PubMed ID: 15784738
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NME6: ribonucleotide salvage sustains mitochondrial transcription.
    Wanrooij PH; Chabes A
    EMBO J; 2023 Sep; 42(18):e114990. PubMed ID: 37548337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling of pathogenic variants of mitochondrial DNA polymerase: insight into the replication defects and implication for human disease.
    Hoyos-Gonzalez N; Trasviña-Arenas CH; Degiorgi A; Castro-Lara AY; Peralta-Castro A; Jimenez-Sandoval P; Diaz-Quezada C; Lodi T; Baruffini E; Brieba LG
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129608. PubMed ID: 32234506
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proofreading deficiency in mitochondrial DNA polymerase does not affect total dNTP pools in mouse embryos.
    Sharma S; Koolmeister C; Tran P; Nilsson AK; Larsson NG; Chabes A
    Nat Metab; 2020 Aug; 2(8):673-675. PubMed ID: 32778836
    [No Abstract]   [Full Text] [Related]  

  • 53. Reply to: Proofreading deficiency in mitochondrial DNA polymerase does not affect total dNTP pools in mouse embryos.
    Hämäläinen RH; Landoni JC; Ahlqvist KJ; Goffart S; Ryytty S; Rahman MO; Brilhante V; Icay K; Hautaniemi S; Wang L; Laiho M; Suomalainen A
    Nat Metab; 2020 Aug; 2(8):676-677. PubMed ID: 32778835
    [No Abstract]   [Full Text] [Related]  

  • 54. Sensitive assay for mitochondrial DNA polymerase gamma.
    Naviaux RK; Markusic D; Barshop BA; Nyhan WL; Haas RH
    Clin Chem; 1999 Oct; 45(10):1725-33. PubMed ID: 10508117
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional mtDNA replication defect in a fibroblast line from a patient with mtDNA depletion.
    Morten KJ; Freeman Emmerson C; Poulton J
    J Inherit Metab Dis; 1996; 19(2):123-6. PubMed ID: 8739945
    [No Abstract]   [Full Text] [Related]  

  • 56. Replication of animal mitochondrial DNA.
    Clayton DA
    Cell; 1982 Apr; 28(4):693-705. PubMed ID: 6178513
    [No Abstract]   [Full Text] [Related]  

  • 57. rNMPID: a database for riboNucleoside MonoPhosphates in DNA.
    Yang J; Sun M; Ran Z; Yang T; Kundnani DL; Storici F; Xu P
    Bioinform Adv; 2024; 4(1):vbae063. PubMed ID: 38736683
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RESCOT: Restriction Enzyme Set and Combination Optimization Tools for rNMP Capture Techniques.
    Xu P; Storici F
    Theor Comput Sci; 2021 Nov; 894():203-213. PubMed ID: 34924677
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanisms of Mitochondrial DNA Repair in Mammals.
    Zinovkina LA
    Biochemistry (Mosc); 2018 Mar; 83(3):233-249. PubMed ID: 29625543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNase H eliminates R-loops that disrupt DNA replication but is nonessential for efficient DSB repair.
    Zhao H; Zhu M; Limbo O; Russell P
    EMBO Rep; 2018 May; 19(5):. PubMed ID: 29622660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.