These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29601587)

  • 1. Controlling and synchronizing a fractional-order chaotic system using stability theory of a time-varying fractional-order system.
    Huang Y; Wang D; Zhang J; Guo F
    PLoS One; 2018; 13(3):e0194112. PubMed ID: 29601587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems.
    Chen L; Chai Y; Wu R
    Chaos; 2011 Dec; 21(4):043107. PubMed ID: 22225344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-stability and α-synchronization for fractional-order neural networks.
    Yu J; Hu C; Jiang H
    Neural Netw; 2012 Nov; 35():82-7. PubMed ID: 22954481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and synchronization of memristor-based fractional-order delayed neural networks.
    Chen L; Wu R; Cao J; Liu JB
    Neural Netw; 2015 Nov; 71():37-44. PubMed ID: 26282374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global anti-synchronization of a class of chaotic memristive neural networks with time-varying delays.
    Zhang G; Shen Y; Wang L
    Neural Netw; 2013 Oct; 46():1-8. PubMed ID: 23624576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H∞ synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach.
    Lin TC; Kuo CH
    ISA Trans; 2011 Oct; 50(4):548-56. PubMed ID: 21741648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of chaos systems described by nonlinear fractional-order polytopic differential inclusion.
    Balochian S; Sedigh AK
    Chaos; 2012 Mar; 22(1):013120. PubMed ID: 22462996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel synchronization of discrete-time chaotic systems using neural network observer.
    Naghavi SV; Safavi AA
    Chaos; 2008 Sep; 18(3):033110. PubMed ID: 19045448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks.
    Chen WH; Lu X; Zheng WX
    IEEE Trans Neural Netw Learn Syst; 2015 Apr; 26(4):734-48. PubMed ID: 25794379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization of chaotic systems with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking.
    Ge ZM; Yang CH
    Chaos; 2008 Dec; 18(4):043129. PubMed ID: 19123639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.
    Stamova I; Stamov G
    Neural Netw; 2017 Dec; 96():22-32. PubMed ID: 28950105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-time synchronization for memristor-based neural networks with time-varying delays.
    Abdurahman A; Jiang H; Teng Z
    Neural Netw; 2015 Sep; 69():20-8. PubMed ID: 26024807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization of different fractional order chaotic systems with time-varying parameter and orders.
    Behinfaraz R; Badamchizadeh MA
    ISA Trans; 2018 Sep; 80():399-410. PubMed ID: 30054035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.
    Liu M
    Neural Netw; 2009 Sep; 22(7):949-57. PubMed ID: 19443178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New algebraic criteria for synchronization stability of chaotic memristive neural networks with time-varying delays.
    Zhang G; Shen Y
    IEEE Trans Neural Netw Learn Syst; 2013 Oct; 24(10):1701-7. PubMed ID: 24808605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control.
    Zhang H; Ma T; Huang GB; Wang Z
    IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):831-44. PubMed ID: 19906592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaos in fractional-order discrete neural networks with application to image encryption.
    Chen L; Yin H; Huang T; Yuan L; Zheng S; Yin L
    Neural Netw; 2020 May; 125():174-184. PubMed ID: 32135353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear dynamics and chaos in fractional-order neural networks.
    Kaslik E; Sivasundaram S
    Neural Netw; 2012 Aug; 32():245-56. PubMed ID: 22386788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local synchronization of chaotic neural networks with sampled-data and saturating actuators.
    Wu ZG; Shi P; Su H; Chu J
    IEEE Trans Cybern; 2014 Dec; 44(12):2635-45. PubMed ID: 24710840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.
    Qi D; Liu M; Qiu M; Zhang S
    IEEE Trans Neural Netw; 2010 Aug; 21(8):1358-65. PubMed ID: 20601309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.