These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29601639)

  • 1. Optimization of Sample Preparation processes of Bone Material for Raman Spectroscopy.
    Chikhani M; Wuhrer R; Green H
    J Forensic Sci; 2018 Nov; 63(6):1809-1812. PubMed ID: 29601639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential application of Raman spectroscopy for determining burial duration of skeletal remains.
    McLaughlin G; Lednev IK
    Anal Bioanal Chem; 2011 Nov; 401(8):2511-8. PubMed ID: 21870069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones.
    Dal Sasso G; Angelini I; Maritan L; Artioli G
    Talanta; 2018 Mar; 179():167-176. PubMed ID: 29310218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is photobleaching necessary for Raman imaging of bone tissue using a green laser?
    Golcuk K; Mandair GS; Callender AF; Sahar N; Kohn DH; Morris MD
    Biochim Biophys Acta; 2006 Jul; 1758(7):868-73. PubMed ID: 16584709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Bleaching to Minimize Fluorescence Interference in Raman Spectroscopic Measurements for Sulfonated Polystyrene Solutions.
    Li B; Larkin PJ
    Appl Spectrosc; 2020 Jul; 74(7):741-750. PubMed ID: 32223426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal Raman spectrocopy for the analysis of nail polish evidence.
    López-López M; Vaz J; García-Ruiz C
    Talanta; 2015 Jun; 138():155-162. PubMed ID: 25863385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic Raman spectroscopy for the forensic detection of biomaterials and the preservation of cultural heritage.
    Edwards HG; Munshi T
    Anal Bioanal Chem; 2005 Jul; 382(6):1398-406. PubMed ID: 15952003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.
    Cordero E; Korinth F; Stiebing C; Krafft C; Schie IW; Popp J
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28749450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the use of spectra from portable Raman and ATR-IR instruments in synthesis route attribution of a chemical warfare agent by multivariate modeling.
    Wiktelius D; Ahlinder L; Larsson A; Höjer Holmgren K; Norlin R; Andersson PO
    Talanta; 2018 Aug; 186():622-627. PubMed ID: 29784412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges Analyzing Gypsum on Mars by Raman Spectroscopy.
    Marshall CP; Olcott Marshall A
    Astrobiology; 2015 Sep; 15(9):761-9. PubMed ID: 26317670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of elevated hydrogen peroxide 'strip' bleaching on surface and subsurface enamel including subsurface histomorphology, micro-chemical composition and fluorescence changes.
    Götz H; Duschner H; White DJ; Klukowska MA
    J Dent; 2007 Jun; 35(6):457-66. PubMed ID: 17339072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of excitation wavelength on the Raman spectroscopy of the porcine photoreceptor layer from the area centralis.
    Beattie JR; Brockbank S; McGarvey JJ; Curry WJ
    Mol Vis; 2005 Sep; 11():825-32. PubMed ID: 16254551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FT NIR Raman studies on gamma-irradiated bone.
    Kubisz L; Połomska M
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):616-25. PubMed ID: 16859967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and spectroscopic studies of bisphosphonate-bone interactions. The Raman, NMR and crystallographic investigations of Ca-HEDP complexes.
    Cukrowski I; Popović L; Barnard W; Paul SO; van Rooyen PH; Liles DC
    Bone; 2007 Oct; 41(4):668-78. PubMed ID: 17644459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman microscopy of bone.
    Goodyear SR; Aspden RM
    Methods Mol Biol; 2012; 816():527-34. PubMed ID: 22130949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue.
    Morris MD; Matousek P; Towrie M; Parker AW; Goodship AE; Draper ER
    J Biomed Opt; 2005; 10(1):14014. PubMed ID: 15847595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional assessment of bone by Raman spectroscopy.
    Unal M; Ahmed R; Mahadevan-Jansen A; Nyman JS
    Analyst; 2021 Dec; 146(24):7464-7490. PubMed ID: 34786574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Progress in study of biomolecular damages by Raman spectroscopy].
    Li LL; Zhao LJ; Zhong RG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Sep; 32(9):2422-6. PubMed ID: 23240410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Rapid identification of potato cultivars using NIR-excited fluorescence and Raman spectroscopy].
    Dai F; Bergholt MS; Benjamin AJ; Hong TS; Zhiwei H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):677-80. PubMed ID: 25208390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood identification and discrimination between human and nonhuman blood using portable Raman spectroscopy.
    Fujihara J; Fujita Y; Yamamoto T; Nishimoto N; Kimura-Kataoka K; Kurata S; Takinami Y; Yasuda T; Takeshita H
    Int J Legal Med; 2017 Mar; 131(2):319-322. PubMed ID: 27262482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.