These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29601750)

  • 1. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy.
    Söngen H; Reischl B; Miyata K; Bechstein R; Raiteri P; Rohl AL; Gale JD; Fukuma T; Kühnle A
    Phys Rev Lett; 2018 Mar; 120(11):116101. PubMed ID: 29601750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips.
    Wastl DS; Judmann M; Weymouth AJ; Giessibl FJ
    ACS Nano; 2015; 9(4):3858-65. PubMed ID: 25816927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.
    Kobayashi K; Liang Y; Amano K; Murata S; Matsuoka T; Takahashi S; Nishi N; Sakka T
    Langmuir; 2016 Apr; 32(15):3608-16. PubMed ID: 27018633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy.
    Fukuma T; Garcia R
    ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can Point Defects in Surfaces in Solution be Atomically Resolved by Atomic Force Microscopy?
    Reischl B; Raiteri P; Gale JD; Rohl AL
    Phys Rev Lett; 2016 Nov; 117(22):226101. PubMed ID: 27925727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy.
    Fukuma T
    Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional solvation structure of ethanol on carbonate minerals.
    Söngen H; Jaques YM; Spijker P; Marutschke C; Klassen S; Hermes I; Bechstein R; Zivanovic L; Tracey J; Foster AS; Kühnle A
    Beilstein J Nanotechnol; 2020; 11():891-898. PubMed ID: 32566439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.
    Marutschke C; Walters D; Walters D; Hermes I; Bechstein R; Kühnle A
    Nanotechnology; 2014 Aug; 25(33):335703. PubMed ID: 25074402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces.
    Miyazawa K; Watkins M; Shluger AL; Fukuma T
    Nanotechnology; 2017 Jun; 28(24):245701. PubMed ID: 28481216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy.
    Fukuma T
    Sci Technol Adv Mater; 2010 Jun; 11(3):033003. PubMed ID: 27877337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water Orientation at the Calcite-Water Interface.
    Söngen H; Schlegel SJ; Morais Jaques Y; Tracey J; Hosseinpour S; Hwang D; Bechstein R; Bonn M; Foster AS; Kühnle A; Backus EHG
    J Phys Chem Lett; 2021 Aug; 12(31):7605-7611. PubMed ID: 34350760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the Structural Details of Chitin Nanocrystal-Water Interfaces by Three-Dimensional Atomic Force Microscopy.
    Yurtsever A; Wang PX; Priante F; Morais Jaques Y; Miyata K; MacLachlan MJ; Foster AS; Fukuma T
    Small Methods; 2022 Sep; 6(9):e2200320. PubMed ID: 35686343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration Structure at the Calcite-Water (10.4) Interface in the Presence of Rubidium Chloride.
    John S; Kühnle A
    Langmuir; 2022 Sep; 38(38):11691-11698. PubMed ID: 36120896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy.
    Miyazawa K; Kobayashi N; Watkins M; Shluger AL; Amano K; Fukuma T
    Nanoscale; 2016 Apr; 8(13):7334-42. PubMed ID: 26980273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic structure and surface defects at mineral-water interfaces probed by in situ atomic force microscopy.
    Siretanu I; van den Ende D; Mugele F
    Nanoscale; 2016 Apr; 8(15):8220-7. PubMed ID: 27030282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free Energy Approaches for Modeling Atomic Force Microscopy in Liquids.
    Reischl B; Watkins M; Foster AS
    J Chem Theory Comput; 2013 Jan; 9(1):600-8. PubMed ID: 26589058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.
    Miyata K; Tracey J; Miyazawa K; Haapasilta V; Spijker P; Kawagoe Y; Foster AS; Tsukamoto K; Fukuma T
    Nano Lett; 2017 Jul; 17(7):4083-4089. PubMed ID: 28650174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tip dependence of three-dimensional scanning force microscopy images of calcite-water interfaces investigated by simulation and experiments.
    Miyazawa K; Tracey J; Reischl B; Spijker P; Foster AS; Rohl AL; Fukuma T
    Nanoscale; 2020 Jun; 12(24):12856-12868. PubMed ID: 32520063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic attraction as revealed by AFM force measurements and molecular dynamics simulation.
    Fa K; Nguyen AV; Miller JD
    J Phys Chem B; 2005 Jul; 109(27):13112-8. PubMed ID: 16852631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Water Is Separated from a Hydrophobic Silica Surface by a Gap of 1.2 nm.
    Arvelo DM; Comer J; Schmit J; Garcia R
    ACS Nano; 2024 Jul; 18(28):18683-18692. PubMed ID: 38973716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.