These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 29601901)

  • 1. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.
    Jakus AE; Geisendorfer NR; Lewis PL; Shah RN
    Acta Biomater; 2018 May; 72():94-109. PubMed ID: 29601901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications.
    Jakus AE; Secor EB; Rutz AL; Jordan SW; Hersam MC; Shah RN
    ACS Nano; 2015; 9(4):4636-48. PubMed ID: 25858670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of BMP-12-overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair.
    Chen P; Cui L; Chen G; You T; Li W; Zuo J; Wang C; Zhang W; Jiang C
    Int J Biol Macromol; 2019 Oct; 138():79-88. PubMed ID: 31295489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering.
    Jakus AE; Shah RN
    J Biomed Mater Res A; 2017 Jan; 105(1):274-283. PubMed ID: 26860782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques.
    Grottkau BE; Hui Z; Yao Y; Pang Y
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters.
    Jain S; Fuoco T; Yassin MA; Mustafa K; Finne-Wistrand A
    Biomacromolecules; 2020 Feb; 21(2):388-396. PubMed ID: 31566357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Scaffold with Directional Microchannels Promotes Cell Ingrowth for Bone Regeneration.
    Cheng Y; Li X; Gu P; Mao R; Zou Y; Tong L; Li Z; Fan Y; Zhang X; Liang J; Sun Y
    Adv Healthc Mater; 2024 May; 13(12):e2303600. PubMed ID: 38303119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering.
    Taylor SL; Ibeh AJ; Jakus AE; Shah RN; Dunand DC
    Acta Biomater; 2018 Aug; 76():359-370. PubMed ID: 29890266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
    Hong D; Chou DT; Velikokhatnyi OI; Roy A; Lee B; Swink I; Issaev I; Kuhn HA; Kumta PN
    Acta Biomater; 2016 Nov; 45():375-386. PubMed ID: 27562611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive manufacturing of hierarchical injectable scaffolds for tissue engineering.
    Béduer A; Piacentini N; Aeberli L; Da Silva A; Verheyen CA; Bonini F; Rochat A; Filippova A; Serex L; Renaud P; Braschler T
    Acta Biomater; 2018 Aug; 76():71-79. PubMed ID: 29883809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic and mechanical characterization of 3D-printed scaffolds for tissue engineering applications.
    Aliabouzar M; Zhang GL; Sarkar K
    Biomed Mater; 2018 Aug; 13(5):055013. PubMed ID: 30018182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications.
    Xu C; Dai G; Hong Y
    Acta Biomater; 2019 Sep; 95():50-59. PubMed ID: 31125728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.
    Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J
    Biofabrication; 2016 Mar; 8(1):015016. PubMed ID: 26930179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of 3D-printed Ti
    Wang H; Su K; Su L; Liang P; Ji P; Wang C
    J Mech Behav Biomed Mater; 2018 Dec; 88():488-496. PubMed ID: 30223212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels.
    Farsheed AC; Thomas AJ; Pogostin BH; Hartgerink JD
    Adv Mater; 2023 Mar; 35(11):e2210378. PubMed ID: 36604310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.
    Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K
    Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printing of high-strength, porous, elastomeric structures to promote tissue integration of implants.
    Abar B; Alonso-Calleja A; Kelly A; Kelly C; Gall K; West JL
    J Biomed Mater Res A; 2021 Jan; 109(1):54-63. PubMed ID: 32418348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.