BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29601927)

  • 1. Genetic alterations in the NO-cGMP pathway and cardiovascular risk.
    Wobst J; Schunkert H; Kessler T
    Nitric Oxide; 2018 Jun; 76():105-112. PubMed ID: 29601927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Characterization of the
    Kessler T; Wobst J; Wolf B; Eckhold J; Vilne B; Hollstein R; von Ameln S; Dang TA; Sager HB; Moritz Rumpf P; Aherrahrou R; Kastrati A; Björkegren JLM; Erdmann J; Lusis AJ; Civelek M; Kaiser FJ; Schunkert H
    Circulation; 2017 Aug; 136(5):476-489. PubMed ID: 28487391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cGMP Signaling in Cardiovascular Diseases: Linking Genotype and Phenotype.
    Dang TA; Schunkert H; Kessler T
    J Cardiovasc Pharmacol; 2020 Jun; 75(6):516-525. PubMed ID: 32487847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulators of the soluble guanylyl cyclase: promising functional insights from rare coding atherosclerosis-related GUCY1A3 variants.
    Wobst J; von Ameln S; Wolf B; Wierer M; Dang TA; Sager HB; Tennstedt S; Hengstenberg C; Koesling D; Friebe A; Braun SL; Erdmann J; Schunkert H; Kessler T
    Basic Res Cardiol; 2016 Jul; 111(4):51. PubMed ID: 27342234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of sGC-dependent NO signalling and myocardial infarction risk.
    Wobst J; Kessler T; Dang TA; Erdmann J; Schunkert H
    J Mol Med (Berl); 2015 Apr; 93(4):383-94. PubMed ID: 25733135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular variants of soluble guanylyl cyclase affecting cardiovascular risk.
    Wobst J; Rumpf PM; Dang TA; Segura-Puimedon M; Erdmann J; Schunkert H
    Circ J; 2015; 79(3):463-9. PubMed ID: 25746521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression of soluble guanylyl cyclase subunits and PDE5A shRNA to elevate cellular cGMP level: A potential gene therapy for myocardial cell death.
    Jing G; Xia Z; Lei Q
    Technol Health Care; 2023; 31(3):901-910. PubMed ID: 36442224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paracrine nitric oxide induces expression of cardiac sarcomeric proteins in adult progenitor cells through soluble guanylyl cyclase/cyclic-guanosine monophosphate and Wnt/β-catenin inhibition.
    De Pauw A; Massion P; Sekkali B; Andre E; Dubroca C; Kmecova J; Bouzin C; Friart A; Sibille C; Gilon P; De Mulder D; Esfahani H; Strapart A; Martherus R; Payen V; Sonveaux P; Brouckaert P; Janssens S; Balligand JL
    Cardiovasc Res; 2016 Oct; 112(1):478-90. PubMed ID: 27520736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the nitric oxide-soluble guanylyl cyclase pathway in obstructive airway diseases.
    Dupont LL; Glynos C; Bracke KR; Brouckaert P; Brusselle GG
    Pulm Pharmacol Ther; 2014 Oct; 29(1):1-6. PubMed ID: 25043200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease.
    Kraehling JR; Sessa WC
    Circ Res; 2017 Mar; 120(7):1174-1182. PubMed ID: 28360348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic Consequences of a Genetic Predisposition to Enhanced Nitric Oxide Signaling.
    Emdin CA; Khera AV; Klarin D; Natarajan P; Zekavat SM; Nomura A; Haas M; Aragam K; Ardissino D; Wilson JG; Schunkert H; McPherson R; Watkins H; Elosua R; Bown MJ; Samani NJ; Baber U; Erdmann J; Gormley P; Palotie A; Stitziel NO; Gupta N; Danesh J; Saleheen D; Gabriel S; Kathiresan S
    Circulation; 2018 Jan; 137(3):222-232. PubMed ID: 28982690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Endothelium-Dependent Nitric Oxide-cGMP Pathway.
    Mónica FZ; Bian K; Murad F
    Adv Pharmacol; 2016; 77():1-27. PubMed ID: 27451093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biallelic variants in NOS3 and GUCY1A3, the two major genes of the nitric oxide pathway, cause moyamoya cerebral angiopathy.
    Guey S; Hervé D; Kossorotoff M; Ha G; Aloui C; Bergametti F; Arnould M; Guenou H; Hadjadj J; Dubois Teklali F; Riant F; Balligand JL; Uzan G; Villoutreix BO; Tournier-Lasserve E
    Hum Genomics; 2023 Mar; 17(1):24. PubMed ID: 36941667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide-independent stimulation of soluble guanylate cyclase with BAY 41-2272 in cardiovascular disease.
    Boerrigter G; Burnett JC
    Cardiovasc Drug Rev; 2007; 25(1):30-45. PubMed ID: 17445086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What is next in nitric oxide research? From cardiovascular system to cancer biology.
    Bian K; Murad F
    Nitric Oxide; 2014 Dec; 43():3-7. PubMed ID: 25153032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective.
    Krishnan SM; Kraehling JR; Eitner F; Bénardeau A; Sandner P
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29890734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling.
    Gao Y
    J Cardiovasc Pharmacol; 2016 May; 67(5):367-72. PubMed ID: 26452163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide-independent down-regulation of soluble guanylyl cyclase by bacterial endotoxin in astroglial cells.
    Baltrons MA; García A
    J Neurochem; 1999 Nov; 73(5):2149-57. PubMed ID: 10537075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct phosphodiesterase 5A-containing compartments allow selective regulation of cGMP-dependent signalling in human arterial smooth muscle cells.
    Wilson LS; Guo M; Umana MB; Maurice DH
    Cell Signal; 2017 Aug; 36():204-211. PubMed ID: 28506928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and regulation of soluble guanylate cyclase.
    Derbyshire ER; Marletta MA
    Annu Rev Biochem; 2012; 81():533-59. PubMed ID: 22404633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.