BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29602032)

  • 1. Identification and characterisation of Staphylococcus aureus on low cost screen printed carbon electrodes using impedance spectroscopy.
    Ward AC; Hannah AJ; Kendrick SL; Tucker NP; MacGregor G; Connolly P
    Biosens Bioelectron; 2018 Jul; 110():65-70. PubMed ID: 29602032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus.
    Lian Y; He F; Wang H; Tong F
    Biosens Bioelectron; 2015 Mar; 65():314-9. PubMed ID: 25461175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas aeruginosa can be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor.
    Ward AC; Connolly P; Tucker NP
    PLoS One; 2014; 9(3):e91732. PubMed ID: 24614411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus.
    Reich P; Stoltenburg R; Strehlitz B; Frense D; Beckmann D
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29160851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria.
    Bekir K; Barhoumi H; Braiek M; Chrouda A; Zine N; Abid N; Maaref A; Bakhrouf A; Ouada HB; Jaffrezic-Renault N; Mansour HB
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15796-803. PubMed ID: 26036585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus.
    Ranjbar S; Shahrokhian S
    Bioelectrochemistry; 2018 Oct; 123():70-76. PubMed ID: 29729642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system.
    Paredes J; Becerro S; Arizti F; Aguinaga A; Del Pozo JL; Arana S
    Biosens Bioelectron; 2012; 38(1):226-32. PubMed ID: 22705402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediated bioelectrochemical system for biosensing the cell viability of Staphylococcus aureus.
    Hassan RY; Wollenberger U
    Anal Bioanal Chem; 2016 Jan; 408(2):579-87. PubMed ID: 26522330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid antibiotic susceptibility testing using low-cost, commercially available screen-printed electrodes.
    Hannah S; Addington E; Alcorn D; Shu W; Hoskisson PA; Corrigan DK
    Biosens Bioelectron; 2019 Dec; 145():111696. PubMed ID: 31542679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and low-cost biosensor for the detection of Staphylococcus aureus.
    Suaifan GA; Alhogail S; Zourob M
    Biosens Bioelectron; 2017 Apr; 90():230-237. PubMed ID: 27914366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel impedimetric disposable immunosensor for rapid detection of a potential cancer biomarker.
    Asav E; Sezgintürk MK
    Int J Biol Macromol; 2014 May; 66():273-80. PubMed ID: 24560951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Label-Free Impedance Immunosensor Using Screen-Printed Interdigitated Electrodes and Magnetic Nanobeads for the Detection of E. coli O157:H7.
    Wang R; Lum J; Callaway Z; Lin J; Bottje W; Li Y
    Biosensors (Basel); 2015 Dec; 5(4):791-803. PubMed ID: 26694478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical-based ''antibiotsensor'' for the whole-cell detection of the vancomycin-susceptible bacteria.
    Norouz Dizaji A; Ali Z; Ghorbanpoor H; Ozturk Y; Akcakoca I; Avci H; Dogan Guzel F
    Talanta; 2021 Nov; 234():122695. PubMed ID: 34364491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus.
    Esteban-Fernández de Ávila B; Pedrero M; Campuzano S; Escamilla-Gómez V; Pingarrón JM
    Anal Bioanal Chem; 2012 May; 403(4):917-25. PubMed ID: 22290389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes.
    Wang Z; Zhang J; Chen P; Zhou X; Yang Y; Wu S; Niu L; Han Y; Wang L; Chen P; Boey F; Zhang Q; Liedberg B; Zhang H
    Biosens Bioelectron; 2011 May; 26(9):3881-6. PubMed ID: 21458255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity Enhancement of Bead-based Electrochemical Impedance Spectroscopy (BEIS) biosensor by electric field-focusing in microwells.
    Shin KS; Ji JH; Hwang KS; Jun SC; Kang JY
    Biosens Bioelectron; 2016 Nov; 85():16-24. PubMed ID: 27152445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of stable and reproducible biosensors based on electrochemical impedance spectroscopy: three-electrode versus two-electrode setup.
    Ianeselli L; Grenci G; Callegari C; Tormen M; Casalis L
    Biosens Bioelectron; 2014 May; 55():1-6. PubMed ID: 24355458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A.
    Ohno R; Ohnuki H; Wang H; Yokoyama T; Endo H; Tsuya D; Izumi M
    Biosens Bioelectron; 2013 Feb; 40(1):422-6. PubMed ID: 22917917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printed interdigital electrodes on plastic film for tumor cells density monitoring.
    Chen L; Guo J
    Electrophoresis; 2015 Aug; 36(16):1859-61. PubMed ID: 26031624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A regenerating self-assembled gold nanoparticle-containing electrochemical impedance sensor.
    Mahmoud AM; Tang T; Harrison DJ; Lee WE; Jemere AB
    Biosens Bioelectron; 2014 Jun; 56():328-33. PubMed ID: 24530834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.