These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29602111)

  • 1. Formulation approaches to reduce post-application pesticide volatilisation from glass surfaces.
    Houbraken M; Senaeve D; Dávila EL; Habimana V; De Cauwer B; Spanoghe P
    Sci Total Environ; 2018 Aug; 633():728-737. PubMed ID: 29602111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of adjuvants on the dissipation of fenpropimorph, pyrimethanil, chlorpyrifos and lindane on the solid/gas interface.
    Houbraken M; Senaeve D; Fevery D; Spanoghe P
    Chemosphere; 2015 Nov; 138():357-63. PubMed ID: 26133697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatilisation of pesticides under field conditions: inverse modelling and pesticide fate models.
    Houbraken M; van den Berg F; Butler Ellis CM; Dekeyser D; Nuyttens D; De Schampheleire M; Spanoghe P
    Pest Manag Sci; 2016 Jul; 72(7):1309-21. PubMed ID: 26374459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measured and computed volatilisation of the fungicide fenpropimorph from a sugar beet crop.
    Leistra M; Smelt JH; van den Berg F
    Pest Manag Sci; 2005 Feb; 61(2):151-8. PubMed ID: 15619709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing flow-through air samplers for use in near-field vapour drift studies by measuring pyrimethanil in air after spraying.
    Geoghegan TS; Hageman KJ; Hewitt AJ
    Environ Sci Process Impacts; 2014 Mar; 16(3):422-32. PubMed ID: 24365971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of wind tunnel and field experiments to measure potential deposition of fenpropimorph following volatilisation from treated crops.
    Hassink J; Platz K; Stadler R; Zangmeister W; Fent G; Möndel M; Kubiak R
    Pest Manag Sci; 2007 Feb; 63(2):171-9. PubMed ID: 17154244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatilisation of pesticides after application in vegetable greenhouses.
    Doan Ngoc K; van den Berg F; Houbraken M; Spanoghe P
    Sci Total Environ; 2015 Feb; 505():670-9. PubMed ID: 25461070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatilisation of crop protection chemicals from crop and soil surfaces under controlled conditions--prediction of volatile losses from physico-chemical properties.
    Guth JA; Reischmann FJ; Allen R; Arnold D; Hassink J; Leake CR; Skidmore MW; Reeves GL
    Chemosphere; 2004 Nov; 57(8):871-87. PubMed ID: 15488578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of commercial formulation on leaching of four pesticides through soil.
    Khan MA; Brown CD
    Sci Total Environ; 2016 Dec; 573():1573-1579. PubMed ID: 27642073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling pesticides volatilisation in greenhouses: Sensitivity analysis of a modified PEARL model.
    Houbraken M; Doan Ngoc K; van den Berg F; Spanoghe P
    Sci Total Environ; 2017 Dec; 599-600():1408-1416. PubMed ID: 28531950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations into the source of two fungicides measured in the air for 24 hours following application to a cereal crop.
    Ellis MC; Lane AG; O'Sullivan CM; Miller PC
    Commun Agric Appl Biol Sci; 2009; 74(1):37-46. PubMed ID: 20218509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Herbicide formulations.
    Tominack RL
    J Toxicol Clin Toxicol; 2000; 38(2):129-35. PubMed ID: 10778909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatilisation and competing processes computed for a pesticide applied to plants in a wind tunnel system.
    Leistra M; Wolters A; van den Berg F
    Pest Manag Sci; 2008 Jun; 64(6):669-75. PubMed ID: 18213615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling exposure of workers, residents and bystanders to vapour of plant protection products after application to crops.
    van den Berg F; Jacobs CMJ; Butler Ellis MC; Spanoghe P; Doan Ngoc K; Fragkoulis G
    Sci Total Environ; 2016 Dec; 573():1010-1020. PubMed ID: 27607904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of insecticide formulation and adjuvant combination on agricultural spray drift.
    Preftakes CJ; Schleier JJ; Kruger GR; Weaver DK; Peterson RKD
    PeerJ; 2019; 7():e7136. PubMed ID: 31249737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of (Nano)formulations on the Fate of an Insecticide in Soil and Consequences for Environmental Exposure Assessment.
    Kah M; Weniger AK; Hofmann T
    Environ Sci Technol; 2016 Oct; 50(20):10960-10967. PubMed ID: 27648740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The formulation makes the honey bee poison.
    Mullin CA; Chen J; Fine JD; Frazier MT; Frazier JL
    Pestic Biochem Physiol; 2015 May; 120():27-35. PubMed ID: 25987217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of tank mixed adjuvants on the drift potential of phenmedipham formulations.
    Stainier C; Destain MF; Schiffers B; Lebeau F
    Commun Agric Appl Biol Sci; 2005; 70(4):979-87. PubMed ID: 16628946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaporation drift of pesticides active ingredients.
    De Schampheleire M; Nuyttens D; De Keyser D; Spanoghe P
    Commun Agric Appl Biol Sci; 2008; 73(4):739-42. PubMed ID: 19226822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil.
    Mandal S; Donner E; Vasileiadis S; Skinner W; Smith E; Lombi E
    Sci Total Environ; 2018 Jun; 627():942-950. PubMed ID: 29426218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.