These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29602301)

  • 1. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.
    Xu M; Lerner AL; Funkenbusch PD; Richhariya A; Yoon G
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):287-296. PubMed ID: 29602301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical and refractive behaviors of keratoconic cornea based on three-dimensional anisotropic hyperelastic models.
    Han Z; Sui X; Zhou D; Zhou C; Ren Q
    J Refract Surg; 2013 Apr; 29(4):282-90. PubMed ID: 23557227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse solution of corneal material parameters based on non-contact tonometry: A comparative study of different constitutive models.
    Huang L; Shen M; Liu T; Zhang Y; Wang Y
    J Biomech; 2020 Nov; 112():110055. PubMed ID: 33039923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models.
    Jannesari M; Kadkhodaei M; Mosaddegh P; Kasprzak H; Behrouz MJ
    Acta Bioeng Biomech; 2018; 20(1):39-48. PubMed ID: 29658515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled biomechanical response of the cornea assessed by non-contact tonometry. A simulation study.
    Ariza-Gracia MÁ; Zurita JF; Piñero DP; Rodriguez-Matas JF; Calvo B
    PLoS One; 2015; 10(3):e0121486. PubMed ID: 25780915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo.
    Sinha Roy A; Kurian M; Matalia H; Shetty R
    J Mech Behav Biomed Mater; 2015 Aug; 48():173-182. PubMed ID: 25955559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive laws for biomechanical modeling of refractive surgery.
    Bryant MR; McDonnell PJ
    J Biomech Eng; 1996 Nov; 118(4):473-81. PubMed ID: 8950650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individualized Characterization of the Distribution of Collagen Fibril Dispersion Using Optical Aberrations of the Cornea for Biomechanical Models.
    Xu M; Ramirez-Garcia MA; Narang H; Buckley MR; Lerner AL; Yoon G
    Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):54. PubMed ID: 32866268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical and optical behavior of human corneas before and after photorefractive keratectomy.
    Sánchez P; Moutsouris K; Pandolfi A
    J Cataract Refract Surg; 2014 Jun; 40(6):905-17. PubMed ID: 24857438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea.
    Sun MG; Son T; Crutison J; Guaiquil V; Lin S; Nammari L; Klatt D; Yao X; Rosenblatt MI; Royston TJ
    J Mech Behav Biomed Mater; 2022 Apr; 128():105100. PubMed ID: 35121423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of accurately assessing biomechanics of the cornea.
    Roberts CJ
    Curr Opin Ophthalmol; 2016 Jul; 27(4):285-91. PubMed ID: 27152485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the eye globe design on biomechanical analysis.
    Issarti I; Koppen C; Rozema JJ
    Comput Biol Med; 2021 Aug; 135():104612. PubMed ID: 34261005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibrating corneal material model parameters using only inflation data: an ill-posed problem.
    Kok S; Botha N; Inglis HM
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1460-75. PubMed ID: 25112972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cornea material stiffness on measured intraocular pressure.
    Kwon TH; Ghaboussi J; Pecknold DA; Hashash YM
    J Biomech; 2008; 41(8):1707-13. PubMed ID: 18455173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analytical approach to corneal mechanics for determining practical, clinically-meaningful patient-specific tissue mechanical properties in the rehabilitation of vision.
    Asher R; Gefen A; Moisseiev E; Varssano D
    Ann Biomed Eng; 2015 Feb; 43(2):274-86. PubMed ID: 25294315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Finite element analysis of determining corneal biomechanical properties in vivo based on Corvis ST].
    Meng Q; Wang X; Chen W; Li X; He R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Aug; 37(4):608-613. PubMed ID: 32840077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An inverse finite element method for determining the anisotropic properties of the cornea.
    Nguyen TD; Boyce BL
    Biomech Model Mechanobiol; 2011 Jun; 10(3):323-37. PubMed ID: 20602142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the ex vivo biomechanical properties of porcine cornea with inflation test for corneal xenotransplantation.
    Bao F; Jiang L; Wang X; Zhang D; Wang Q; Zeng Y
    J Med Eng Technol; 2012 Jan; 36(1):17-21. PubMed ID: 22085017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on establishment and mechanics application of finite element model of bovine eye.
    Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K
    BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests.
    Simonini I; Pandolfi A
    J Mech Behav Biomed Mater; 2016 May; 58():75-89. PubMed ID: 26282384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.